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Overview

* |n Part |, we covered a wide variety of foundational tools:
* Concentration inequalities.
* Uniform convergence / empirical process theory.
* Nonlinear stability theory.

* |n Part ll, we will apply these tools to several applications:
* | earning stability certificates from data.
o Stability constrained imitation learning.

* Regret bounds for adaptive nonlinear control.
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Lab-to-Reality Transfer?

« How do we deploy these demos out into the real world at scale?
* A lot of research has focused on:

e Algorithmic improvements

* Better models/simulators
* Less emphasis on provable stability and safety guarantees.

* Understanding limits is key to real-world deployment.

* This talk: an algorithmic framework for provably certifying guarantees of a dynamical
system from trajectory data.



Problem formulation

« Dynamical system: x = f(x), x € |

n

» Let ¢ (&) denote the flow-map at time ¢ € T starting at x(0) = & € X.

» Certificate function space: 7 C C I(L " R).

 Evaluation function 7 € C(R" X R" X R X R", R).

» Goal: Find V € 7 such that:
), p(S), V(p(5)), VV(p()) <0 Ve X, teT
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 V can be used to certify desirable system behavior. ;1 5
« Lyapunov stability: Conditions (a) & (b) imply x = 0 is (locally) asymptotically stable:
« (a) V(x) > 0, V(0) =0,
+ (b) (VV(x),f(x)) £ —alx) Vx € B)(0,¢) [ais class F].

 Barrier function: Conditions (a) & (b) imply € := {x : V(x) = 0} is invariant:
e @ V(x)=0= VV(x) #0,
e (b) (VV(x),f(x)) > —a(V(x)) Vx € € [ais class H].




Why?

e Recall we want to find V € 77 such that:
(S, p &), V(p(S)), VV(p(S) <0 VEe X,teT

» Lyapunov stability: set i(x, X, V(x), VV(x)) = (VV(x), x) + a(x).
» Barrier function: set i1(x, X, V(x), VV(x)) = — (VV(x), x) — a(V(x)).

* Note: can handle incremental stability by drawing pairs of initial conditions.



What about sum-of-squares programming?

» Given knowledge of dynamics f(x), can search for V satisfying & < 0O using
sum-of-squares programming.

 Caveat: only if f(x), V(x), h(x) are polynomials.

 Caveat: only if degree of polynomials and state dimension is not too large
(SDP does not scale well in # of decision variables).

» Goal: search for V using only trajectories of x = f(x).



Problem formulation

e Let & denote a distribution over X.

- Observations: D = { {¢/(S) },er} =1 Where &y, ..., ¢, are i.i.d. samples from <.

* We study the following empirical estimate:

findycy s.t. M@(S), pAS), V(pLs)), VV(pLS))) < —7
i=1,.m, teT.

e Supposing problem is feasible, let ‘A/m € 7 denote a solution. Define the
generalization error of V, as:

err(V,,) =P {%h (2.9, V@), V(0 ) > 0 }




Problem formulation
 (Generalization error:

err(V,,) = Peg {maxh (0.9, V(@ (). V(0 ) > 0 }

el

. Measures the probability that V, fails to certify a trajectory {¢,(£)}, when
initialized at & ~ .

* Question: How many trajectories m = m(g, 0) do we need such that
err(V, ) < & with probability at least 1 — o (over &;,...,¢&)?



Algorithmic Framework

Existing pipeline

‘ Fancy RL m Closed loop
Objective algorithm x = g(x) = flx, 7(x)

. . "
) Trajectories {¢;}'_,

min Jc(x, u) dt

Outputs:

1. Acertificate V, € 7.
— ¥ 2. A probabilistic guarantee

P(h(&,V,) > 0) < Odim(Z)/m).
h(f, V) S 0 This talk

Optimization

find, st h(&, V) < 0




Supervised learning reduction

e Let h(&, V) be shorthand for:

h(E, V) :=max h (¢ &), p&), V(p(&), VV(pl(£))).

el

« Forany V € 7, define the empirical (margin) risk IAQ},(V) and true risk R(V) as:

A\

1 m
R(V) = — D> L, V) > =1}, R(V) =Py (R V) > 0).
=1

. By definition of V, , we have IAQ},(‘A/m) = 0 (all constraints are satisfied).

» To proceed, we want to upper bound R(‘A/m) by some expression containing ﬁy(f/m) (via
a uniform convergence argument).



Supervised learning reduction

« We will use a result from [Srebro et al. 2010] which yields uniform convergence for
-smooth losses (H-Lipschitz gradients).

* |Let us review the setup of supervised learning:

« # C F(X,R) is ahypothesis class.

» ¢ : RXR — R, is anon-negative loss function.

« U is a distribution over X X R.

o L(h) = E ) oh(h). ).

. 1
L(h) = — Z P(h(xy), yi) with (X, ¥;) ~ijq. 2.
e



Supervised learning reduction

 Theorem [Srebro et al. 2010]:

. Suppose sup sup sup | ¢(h(x),y)| < bandthatr — ¢(z,y) is H-smooth for every y € R.
xed yeR he#X

1 m
Define £,(#) := sup [, sup— Z g:h(x;).

Xpsees Xy EX hege M~

blog(1/0)

m

. DefineI'(#,m,d) := Hlog3 m - 3?,%1(?/) |

» Then, with probability at least 1 — 6 (over (x,y,),...,(x,,y,) drawn i.i.d. from &), forany h € Z,

L(h) < L(h) + 0(1)\/ LT, m. 5) + O(DT(F. m. 5).

. Fast rate: Therefore, if h € arg min i(h) satisfies i(iz) = 0, then L(lAz) S ODI(HZ,m, o).
heX



Supervised learning reduction

0 ifr < —v,
Define ¢b,(1) := 4 7 it e (=y,0),.
1 1> 0

» Observe the relationship for all 1 € R:

1{t> 0} < () < {1 > — 7}

e Therefore:

. E1{h(¢,V,) > 0} < Ep(h(E,V,))

m

¢y(t)
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Supervised learning reduction

 We can apply [Srebro et al. 2010]’s result as follows.

First, err(V, ) = P(W(&, V) > 0) = E1{h(£, V) > 0} <

2
T
Next, one can check that ¢, is -smooth.
4y?
1 m
Define &,(7) := sup [E . sup— ) eh(&, V).
EnE €X vey M "~

log”

[Srebro et al. 2010]’s result implies err(‘A/m) < 0(1)( >
Y

It remains to bound the Rademacher complexity £, (7).

m
R2(V) +

= (h(E, V).

log(1/0)

m

).



Rademacher complexity bounds

» We bound the Rademacher complexity &, (7") by using Dudley’s inequality.

* We need the following two assumptions.

Assumption (stability i.s.L.): There exists a compact $ such that U p(X) C 8.
teT

» Assumption (reqularity of 7):

sup sup | V(x)| < By
Ve? xes

sup sup || VV()|l, < Byy,.
Ve7 xeS§



Rademacher complexity bounds
» Let L, denote an upper bound such that (V, VV) = h(x, f(x),V,VV)is L,

-Lipschitz for all x € S§.
V
Define the following norm on 7: || V||, := sup [V‘S(C))()]

’ xXEeS

2
» Claim:forany £ € Xand V;,V, € 7/, we have:

| A(S, V) = (G, V)| < LIV = Vally



 Proof of claim ‘h(f, Vl) — h(f, Vz) ‘ < LhHVI — VZH%

. Define 1(E, V) := h (@), 9&), V(eLE)), VV(p£))).
. Let £, be such that A(&, V) = hti(cf, V)forie {1,2}.

e Observe that:

h(f? Vl) T h(é? VZ) — htl(fa Vl) _ ht2(59 V2)
< htl(59 Vl) _ htl(ga V2)

. Vi, (&) — Valep, (£))
SV Ve, (9) — V V(g (£)
2
V1(x) — Vz(x)
< L
hilelg lvvl(x) — VVz(X)] ,
= Ly|lV; = V;lly-

» An identical bound holds for h(&, V,) — h(&, V). =

[htl(ga VZ) < htz(fa Vz)]

| definition of L, |

[stability i.s.L.]



Rademacher complexity bounds

* Therefore by Dudley’s inequality, we have:

241, (™
RV <=2 | \logN& 711 de
m Jo
» Here, N(&; 7 ,|| - |l) is the covering number of 7" in the || - ||-norm at
resolution €.

 To further specialize this bound, we need to specialize the function class 7.



Rademacher complexity bounds

» Consider 7" = {Vy(x) = gx,0) : 0 €| K 10|, < By} with
g € C(R"x R R).

» Let L, be such that 0— 2(x,0)is L,-Lipschitz on %S(O,Be) forallx € §.

+ Let Ly, be such that @ — V g(x, 0) is Ly,-Lipschitz on %S(O,BH) for all
x €.

k
. Claim: %,(7) < 32.5ByL,(L, + Ly )\ | —
m



Rademacher complexity bounds

» Proof: by Lipschitz assumptions, for all 0,, 6, € [t S(O,Bg):

Vi = Walloyr < (L + Ly )I|0) — 5]

e Therefore:

24L, [©
R (V) < [ VI1og N(e; 7|l - o) de [Dudley's inequality]
0

m

24BQLh(L + Ly,) -
< [ \/log N(e; B5(0,1),[ - [|,) de [Lipschitz inequality above]

< 24B,L,,(L, + Ly / % \/log(l +2/¢) de [N(e; B5(O0,1),]| - I1,) < (1 +2/e)"]
0

[ k
m



Rademacher complexity bounds

e Let us add some more structure to 7.

e A natural way to enforce non-negativity of 7 is to use the representation
7 ={xH ) Qux): Qe RP?, Q=0">0, ||Qllr < By}, where y € C'(R", RP)
Is a feature map.

2

If we use the previous analysis, we have £, (7) < \ P since there are ®(p?) parameters.

m

plog p
—

. Claim: £, (7') < \



Rademacher complexity bounds

Proof: Let sup ||y (x)||, < B, and sup
XES XES

< Bp,

Op
T

0
. We have that V V(x) = Za—w (x)Ow(x).
X

» Not hard to check that ||V} — V,|lo» < B (B, + 2Bp, ) [| Q1 — Osllqp.
24B,B (B, + 2Bp, )L, J'°°

J/m

Therefore, £, (7)) < log N(&; %IZ?XP(O,I),H - lop) de.

0



Rademacher complexity bounds

. The mismatch in norms in the covering number log N(e; %gXp(O,l),H - |lp) allows for some wins.

» First, the trivial bound. Because ||Q||,, < [|Q|| we have:

log N(e; BEP(0,1),] - Ilp) < log N(e; BEP(0,1),]] - || ) < p~log(l + 2/e).

* Next, by the dual Sudakov inequality [Vershynin 2010], we can improve the dependence on p at the
expense of a worse dependence on &:

log N(e; B2(0,1),]] - |lop) < cple”.

 Combining both inequalities:

log N(e; BEP(0,1),] - Ilop) < min{plog(l + 2/¢), cp/e?}.




. Nc1>w forany 7 € (0,1):
J SO NGB OD I Tl de

T |
<pJ v9og(1 + 2/¢) de + /cpJ /e de [log N(e; BEP(0,1), | - |lp) < min{p*log(l + 2/¢), cple”}]

< pJ \/1og(3/¢) de + 4 [cp log(1/7) .
0

e From Mathematica:

r \/10gG7e) de = 71/Tog37) - 3\2/7? erfc (/1og(377) )
0
< 7y/log(3/7) + 3\2/; exp(—log(3/7)) [erfc(x) < exp(—x?) for x > 0]

U

= 7y/log(3/7) + 7——.

T

. Therefore, setting 7 = 1/\/]_9, we haveJ \/log N(e; -IZ’XP(O,I),H lop) de < 0(1)\/]_9 log p.
0




Rademacher complexity bounds

e Therefore, we have the bound:

plog® p
R,(7) < O(1)B,B,(B, + BDW)Lh\ .

m



Generalization error bounds

» With bounds on £, (7"), we can obtain bounds on err(‘A/m).

e When 7" = {Vy(x) = g(x,0) : 0 € R, 101, < By}, we have with probability at least
1 —exp(—k),

. klog?
err(V,) < OBILAL2 + L2 )~

m

e When 7 = {x > y(x)'Qu(x) : 0 e R, 0 =0" =0, ||0||» < B}, we have with
probability at least 1 — exp(—p),

. log? plog> m
err(V,) < O()B3BA(B2 + B 1 PE—= L= T

m



Random convex programs (RCP)

» In certain special cases, we can actually obtain sharper bounds on err(‘A/m) using results
on random convex programs [Calafiore 2010].

» Suppose again that 7" = {V(x) = g(x,0) : 0 € | k1. Suppose furthermore that
0 — h(&,V,) is convex for every £ € X.

» Then the feasibility problem find, s.t. h(¢;, Vy) <0, i = 1,...,m is a random convex
program.

k—1
. Theorem [Calafiore 2010]: For any € € (0,1), define f(¢) := Z (m) el(l1 — e)" .

l
i=0
With probability at least 1 — f(¢) (over &, ...,&, ), we haveerr(V,) < €.



Random convex programs (RCP)

» To compare this bound with ours, we need to invert /(g) = 0.
* While this can be done numerically, there is no closed form formula for this.

* We can get an upper bound using the Chernoff inequality, which yields that
with probability at least 1 — o:

A k—1+log(1/8
err(V ) < 0(1)—0‘%().

m

* Order-wise, this matches our parametric bound. However, the RCP constants
are much sharper.



Random convex programs (RCP)

» Let’s see an example where 0 — h(&, V,) is convex.
 Suppose h(x, x, V(x), VV(x)) = (VV(x), x) + pV(x).

. Now suppose V(x) = w(x)' Qu(x). Then,

hix. 3 _ < oy T > T .
(x,x, V(x), VV(x)) = ZE(X) Ow(x),x ) + pw(x) OQw(x), which is

convex (linear) in the parameters Q.



An aside: Towards practical bounds

* Uniform convergence laws typically give the right scaling, but the constants
are not practical.

 Randomized convex programs (cf. [Calafiore 2010], [Campi and Garatti
2008]) give sharp generalization bounds, but only apply to convex
optimization problems.

 PAC-Bayes bounds [McAllester 1999] have been shown to give non-vacuous
bounds (cf. [Dziugaite and Roy 2017], [Majumdar and Goldstein 2018]) for
both deep learning and control problems, but require delicate/expensive joint
training of empirical risk + bound.



An aside: Towards practical bounds

* A basic holdout set bound [Langford 2005] can be very powerful in practical.

e Procedure:

« Split available data into train and holdout set.

« Compute V on the training set.

] & A
Compute p = — 2 1{h(¢&, V) > 0} from holdout set.
Mh i

. Compute UCB on err(V): sup{p € (0,1) : KL(p,p) < mh_1 log(1/6)}.

» (Set m;, = 0.1m (say) for the UCB to tend to zero.)



Deterministic guarantees

 We have given bounds on err(‘A/m), which is the probability that ‘A/m will fail to
certify a trajectory randomly initialized at & ~ 9.

 Can we convert this probabilistic bound into a deterministic bound regarding
the “size” of the state space for which the certificate condition is violated?



Deterministic guarantees

* We first study the following technical question.

» Let y, ., denote the Lebesgue measure and X C R" be a compact set with y; ., (X) > O.

/“tLeb(A)
/’tLeb(X )

* Question: Fix an € € (0,1). What is the largest radius (&) such that there exists a U C X
with 1 (U) < € which contains a ¢’5-ball of radius r(¢)?

for all measurable A C X.

Let uy denote the uniform measure on X i.e., uy(A) =

Mathematically, r(g) = sup  supir>0:dx € Us.t B,(x,r) C U}.
UCX:u,(U)<e




g//lLeb(X) 1/n
//tLeb( %3(0» 1)) |

Proof: for any x, r such that B,(x, r) C U, then by translation invariance:

Claim: r(¢e) < (

M ep(U) 2 pep(B5(x, 7)) = ppp(B5(0,7)) = 77y o, (B5(0,1)).

But since uy(U) < €, we have p; ., (U) < epy o (X).

Therefore, r"p; o,(B5(0,1)) < ep o, (X), which implies the claim. =



Deterministic guarantees

* | et us consider certifying exponential Lyapunov stabillity.

. Let V€ CH(R", R) satisfy V(x) > 1/Hx||%. Define the “bad” set X as:
Xp 1= {5 € X : max(VV(p/(5), (@) > — /IV(CDt(@)}-

el

» Assume that uy(X,) < € (if @ is uniform over X, then puy(X,) = err(V ).

 For which x € S can we assert that { VV(x), f(x)) < — AV(x)?

» Assumption (incremental stability): There exists a class A& £ function f
such that for all §;, &, € X, 1 € T: ||l@(S)) — @)l < PIS) — Salls D)



Deterministic guarantees

e Foro > 0, define:

e X5:={Ee€X:BUE r(e) +6) C X},

) S5 = U%(X(S) and S := ﬂg(;.

reT 0>0)

» Let L, denote the Lipschitz constant of V over §.

» Define g(x) := (V V(x),f(x)) and let L denote its Lipschitz constant over S.

« Theorem: For ally € (0,1):

NAL

L + AL 0
(VV(x),f(x)) < = (1 = nAV(x) Vx € S\ 37 [O,\ Ly + ALPTE) )].



Proof: Let x € S5. By definition of S, there exists a £ € X5, t € T such that ¢ (&) = x.
Define the “good” set as X, := X\X),.
Claim: there must exist a &' € X,, satisfying |[¢ — &'[|, < r(e) + 0.

If & € X, there is nothing to prove, so suppose that ¢ e X,

We know that BS(&, r(e) + 8) € X, since ux(X,) < €.

Furthermore, since & € X(S, we have B5(S, r(e) + o) C X.

Therefore, B5(S, r(€) + 0) N X, is non-empty, proving the claim.




e Therefore:

q(@(S)) < q(pls)) + Lq‘l(ﬂt(f) - @&,

< — AV(@(&) + L lloL) — &), &' € X,]

< — W(@8) + (L, + ALy) [l S) — @ (S)]l2

< — AV (@(9) + (L, + ALY)S(IE — &'l 1) [incremental stability]

< — AW(@[8)) + (L, + ALy)p(r(e) + 0,0). [properties of class KL function]

. This shows forany x € S s, we have g(x) < — AV(x) + (Lq + ALy)p(r(e) + 0,0).

« Taking 0 — 0, by continuity of f in its first argument, for any x € S:
q(x) < — AV(x) + (L, + ALy)p(r(€),0).

 Therefore, forany n € (0,1), since V(x) > I/HXH%:



Deterministic guarantees

 We have shown that the Lyapunov condition holds for all x & S except in a

radius around the origin of size r, < 1/ f(r(€),0). If (s5,0) < s, thenr, < e

A k
. We know that err(V, ) < —. Hence if we want 1, < £, we need m > k™"
m

trajectories.

 This exponential dependence on ( in state dimension is (probably)
unavoidable.



Damped pendulum

» We rollout m = 1000 trajectories for T = 8 seconds (df = 0.02) initialized from
X=[-2,2]1%X[-2,2].

* We fit a neural network Lyapunov function of the form
Vy(x) = xT(LH(x)Lg(x) + I)x where L,(x) is a reshaped fully connected NN.

e \We use a soft loss
1000 400

£00) = ). ), ReLU( VV,(x,(k)), £,K)) + yVy(x,(k)) + A0
=1 k=1

- Time derivatives x;(k) are computed by finite differencing (savgol_filter in scipy).



Damped pendulum

4
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Level sets of the learned Lyapunov function.



Damped pendulum

* To show that the learned Lyapunov function can perform useful downstream
tasks, we add a disturbance to the pendulum dynamics (here a is unknown):

me?0 + bl + mg? sin 0 + (a, k(1)) = u.

 We use a “speed-gradient” (cf. [Fradkov et al.1999]) adaptive controller to
reject the disturbance:

u(t) = (a(), kg(r))
éAl(t) = — () V, Vy(x(1)), €5) .



0 and 0
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Standing minitaur

* \We use the minitaur environment in PyBullet. The state dimension is 16
(excluding the base).

« A random impulse force (kick) is applied to the minitaur at time ¢t = 0, and a

simple PD controller is used to return the minitaur to a desired standing
position.

 We learn a discrete-time Lyapunov function to satisfy
Vye(k+ 1)) < pVyle(k)) + v, where e (k) is the error of the i-th trajectory
at timestep k.




Standing minitaur
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On the Sample Complexity of Stability
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Imitation learning

* |n many tasks, there exists an expert policy which solves the task.
 However, relying on this expert may be undesirable;:
 EXxpert could be a human demonstrator.

* Expert could require lots of computation (e.g. solution to non-convex
optimization problem).

* Expert could be a black-box policy.

* Goal: imitate (via supervised learning) a policy from demonstrations, so that
the learned policy can solve the desired task.



Problem notation

* Discrete-time control-affine dynamical system:
X, =f(x) +gx)u, f(0)=0, x, e R", u, € R

» < is a distribution over initial states & € X (can also generalize to include environment stochasticity).
. For policy 7 : R" — R, let (&) denote the state x, with u, = (x,).

 Expert policy 7, : R" — R4,

- (Weighted) Policy deviation A | (x) := g(x)(7;(x) — m,(x)).

T—1
. Imitation loss £ (; 7y, 1) := Z \\Aﬂl,ﬂz(gof’(f))ﬂz.
=0

« The generalization error of a learned policy wis err(x) := [ 5,\,@1/” & m, ).




Behavior cloning

 Most basic imitation learning algorithm.

- Observe m expert trajectories { { ¢ *(cf)} O}z pWwith &y, ..., ¢, iid. from .

The behavior cloning policy is m,. € arg mln— ¢ (Sis T, Ty ),
) rell m

* Note: A bound on the generalization error err(ﬂbc) IS not immediate from
supervised learning theory, which yields bounds on the related (but not the

same) quantity: £ 52, (S Ty 7T4)-

+ This distribution shift . 5,7 (; e, 71,) Vs Epg? . (&5 Ty, 7,) is What
makes imitation learning trickier to analyze.




Distribution shift

* The key technical question in analyzing imitation learning is the following.

T
_ Given two policies 7, ,, define discy(¢; 7y, 7)) = 2 (&) — @ 2(E) ],
=0

» Can we upper bound discy(&; 7y, m,) by some function of the imitation loss
¢ (S5 7y, 7y) under 7, ?

o Claim (Gronwall bound): Suppose f, g, 7y, @, are B-bounded and L-Lipschitz. Then:
(L(1 +2B)T =1

discr(&; 71y, 1) S ———————F (& 1y, 7).
1(S; 71, ) L(1 +2B) — 1 1(5 7T, )



* Proof: let us consider two trajectories:
xt+1 _f(xt) + g(xt)ﬂl(xt) Xo — é:

Vir1 =S +8)m(y,), Yo = 6.

e \We have:
X1 — Vo1 = J) — ) + g(x)m(x) — gy )m(y,)

= f(x) — () + 8(x)m (x) — 8(x)my(x) + g(x)7mr(x,) — () (yy) -
 Because f, g, 7, iareB bounded and L-Lipschitz, by triangle inequality:
X1 = Verrlla < LA+ 2B)||x, — yill, + Hg(xt)(ﬂl(xt) — (X))l
= L(1 4+ 2B)|lx, = yill> + 1A, ()l



* Previously we showed:
[X41 = Ve lla S LD+ 2B)|[x, = yillo + 1Az 2 )]l -

e Unrolling this recursmn we obtain;

Ix, = i1l < 2 (L(1 +2B)Y A, ()l
=0

e Therefore:

T T—-1 T—t
(L(1 +2B)T" — 1
Z th _yt”z < Z ( L(l I 2B) 1 ) HAnl,nz(xt)HZ

_ (L1 +2B) - KA
L(1 +2B) -1

2 1A, .Gl

/N



Incremental ISS

e Gronwall bound is exponential in horizon length 1!
* Jo Improve the dependence on the horizon length, we need to use some stability theory.

* We start with the following definition of incremental input-to-state stability [Tran et al. 2016].

- Notation: for dynamics x, ;| = f(x,, u,), let ¢S, {u,}~() denote the state x; initialized at
Xy = ¢ with input signal {1} .

» Definition: the dynamics x,, | = f(x,, u,) is 0ISS if there exists class & £ function ¢ and
class % , function y such that for every ¢, &, € X, {i,},59 € U,and t € Ny

HQ”t(fla {ut}tZO) o C”t(gza {O}zgo)ux < 5(”51 T 52”)(9 t) + 4 ( max Huk”U)

0<k<Lr—1



Incremental ISS

. Now suppose that f(x, 1) = f(x) + g(x)m,(x) + u is 0ISS.

» Write xt+1 — f (Xt) g (xz)ﬂl (Xt) — f (xz) g (xz)ﬂz(xz) g (xz)(ﬂl (Xt) o ﬂZ(xt))-

« We can now treat Anl,nz(xt) = g(x)(m;(x,) — m,(x,)) as an input signal to f(x, u):

e 9P(E) = P& (D, (PP ()} 0) and (&) = p,(&, {0} 50).

» Therefore, by 0ISS:

—1
lo, (&) — 9Ol < ¥ (nglgxl \\Aﬂl,@((ﬂ,fl(cf))”z) <7 ( D \\Aﬂl,@(cﬂﬁ(@)\b)-
SIS k=0

e Hence:

T
discr(&; m, m) = ) l9f(€) — ¢l <
=0

T—1

—1
y ( » \\Aﬂl,ﬂz(cﬂ,fl(é))M) <Ty (¢, m.m))
k=0

=0



Incremental ISS

. The bound disc(&; ny, ) < Ty (fﬂl(é; T, 71'2)) improves the dependence

on 1 'when compared to the Gronwall bound.

« However, this bound is not sharp: consider the Gronwall bound when
L(1 +2B) < 1, in which case discy(¢; my, 7,) < O(l)fﬂl(f; Ty, 7Ty) IS

independent of 1.

» This motivates a more quantitative definition of 0ISS.



Incremental gain stability (IGS)

» Definition: Let ¥ = (a, ay, a;, by, by, C, y) with a, ay, a;, by, b, € [1,00), ay < ay,
by < by, and {, y positive. The dynamics x,, | = f(x,, u,) is ‘\P-IGS if for every

51’ 52 € X, {ut}t>() CUTe€& N>O’ letting A - = C”t(fp {ut}t>()) _ C”t(fza {O};go):
me{uA |97, AN} < ClIE - -szX+VZmax{HuH 1%,

. Claim: If f(x, ) = f(x) + g(x)ﬂz(x) + u is W-IGS, then:

1 b by

discp(&my, my) <K 4y VvV 1)““0T Vamax | £, (& my, m) VL, (& my, my) Y



» Proof (of simple case when a = a, and b, = b,).

« We have ¢,"(§) = /(& {A, . (9,(O)}50) and ¢, (&) = @&, {0} 50)-

. Slnce fx) + gx)m(x) + uis T IGS
me{m NANY < yZ lu I



» Letl:={t€{0,...T} : [[A]l5° < [|A]I5'}- Then,
discr(&;m.m) = ) NIAlL+ D AL

tel tel”
l/a, 1/a
< |I|11/a0<z ||At||go> + |16~V ( Z ||At||§1> [Holder's inequality]
tel tel
l/a, 1/a,
< TV ( Y min{ ||At||;’0,||At||§l}> + 711 (Z min| ||At||§o,||At||§1}> (111,110 < T)
rel el
T 1/a, T 1/a,
< TV ( Y min{ ||At||§0,||At||§l}> + 711 (Z min{ ||At||§0,||At||;’l}> [7C {0....7)]
=0 =0
71 l/a, 71 l/a,
< TV (yz ||ut||§0> + 7' Ve (yz ||ut||l;0> [W-IGS with i, = A, . (7(E))]
=0 =0
_ by/a, _ b,/a, i by |
_ _ b
< T oy Vg ( D ||ut||2> + T Ve ey (2 ||ut||2> D Nl < (2 ||ut||2>
=0 =0 5 5
1 _q_L L} by
<2yV 1)“0T1 i max {fﬂl(f; Ty, )90, fnl(f; 72'1,71'2)“} } . l[a + b < 2max{a,b},1 < ay < a]



Incremental gain stability

» Claim (IGS implies bounded state): if fis Y-IGS, then for all £, &, € X,
defing 8, = € 10} 50) = 3. (0150, we have:

Z HAtHX Z(CV l)a/\aOT “V“I max { Hfl §2Ha/\a Hél §2HaVa }

» Similar proof to bound on discy(¢&; 7y, 7,).



Incremental gain stability

- Claim (Lyapunov characterization of IGS): Suppose there exists V : R" X R" — R
satisfying:

« allx =yl < Vix,y) < allx - ylly,

o VO u), f(r,0)) = V(x,y) < — aming [lx — yl1%,[1x =y} + b max{ [l |1},

73 b
. Then fis W-IGS with ¥ = (a, ay, Ay, by, by, , )
aAa aha



* Proof: Define two dynamics:
Xep1 =S 1), Xg = Gy

Vi1 =f(yt90)9 Yo = 52 .

- With V, := V(x,,y,), we have:
Vt+1 — V(xt+19 yt+1) — V(f(xt’ ut)af()}t?()))

- b b
< V(x, y) — amind ||x, — yt”?(oa“xt — Ytug?} + b max{ H%HZ}EH%H(}}
: b b
— Vz —a IIllIl{ th o yt”?(oa”xt o yzug?} + b maX{ H%Hl}),HM;H(}} -

. Unrolling, }Ne obtain:

T—1
: b b
Vr+a Y min{|lx, =yl 0x =yl < Vo+ 5 ) max{flul|% w12}

T—1
_ b b
<alé - &g+ b ) max{|jul|%llull?} .
=0



. Prewously, we showed;

T—1

b

Vp+a ) min{llx, = ylIglx = vy} <@g - @Hﬁmeax{mu M7}
=0

 We can Iower bound the LHS by:

VT+ azmln{ﬂxt ytH th ytug?} ZQHXT_)/TH?('F azmiﬂ{ﬂxt—ny;O,HXt—)’M?}
=0 =0

<aAa>me{uxt VIS 1, = vyl 1, — w115

. A\
= (a A a) 2 ming ||x, — y, 19 llx, — v 115V}

=0
. Tr}erefore:

Zmin{sz_yzH;OAaath_ytug?va} < Hfl o fz”?( ' ZmaX{HurH HutH }

anNa
=0 —




Contraction implies exponential IGS

 Suppose there exists ul < M < LI, and p € (0,1) such that:

» I (x,0) = 0,0l < pllx =yl VX, ¥y € R
e |LfCx, ) — f(x,0)|l,; < LJull, Vx € R, u € R?.

. I\é;)(te that thea;i[rst condition is equivalent to the contraction condition
—(x,0)'M—(x,0) < p*M Vx € R".
ox ox

Ll/t
(1 —p), (1 = p)u

A _
Z 1A < 5 _p)ﬂufl Sl + 5 _p)ﬂ 2 (A8

Claim'fis Y-GS with ¥ = (1,1,1,1,1, > or equivalently:




 Proof: Letting V(x,y) = [|x — y|| 1/,
V(fCx, w), f(3,0)) = |1, 1) =f,0) 1 s

< Hf(-xa l/t) _f(xa())HM_l_ Hf(-xa()) _f(ya())HM
< plix = ylly + L llull,.

* Therefore the IGS Lyapunov condition is verified:
V(f(x, ), [(y,0)) = V(x,y) < = (1 = p)ullx = yll, + L, [[ull,. =



Contraction implies exponential IGS

The same conclusion applies if the metric M(x) is allowed to depend on the state (although the proof is
a bit more technical):

L0 M) 2-(60) < M) Vx € R”
X

 Examples of contracting systems:

CJxu) = Z Al{x € €.}x + B(x)u for {A;} with common quadratic Lyapunov function P and
i=1
B(x) bounded (metric is M(x) = P

o f(x,u) =log(1 xz) u with metric M(x) = 2|1 + exp( — \x\)]_l,

. fx,u) = x —y[ VV(x) + u] with V € C*(R", R) satisfying ul < V?*V(x) < LIandn € (0,1/L].



Tunable Y-IGS system

[ x,”
. Claim: consider the scalar dynamics f(x,, u,) = x, — nx, t

m + nu, for
[

p € (0,00)and 0 <7 < . Then fis W-IGS with
P

22+p
Y=\ 11,1 +p,1,1,——2°*7 ], ie.,

H
2+p

T T—1
D min{[A,[,]A,]"7} < & -5l +277 ) ||
=0 =0

 Proof idea: Show V(x,y) = |x — y| is an IGS Lyapunov function.



Behavior cloning

* Let us now use IGS to analyze stability constrained behavior cloning.

« Recall we observe m expert trajectories {{go (5)} otz With &y, ..., &, i
from <.
m

. The standard behavior cloning policy is 7y, € argmin— ) ¢, (&3 7, 7,.).

rell M 1

m
_ Stability constrained BC policy is 7, € arg mhn — ) ¢, (&7, 7, ), where 11y
relly M

=1
s the set of policies such that f(x, u) = f(x) + g(x)ﬂ(x) + u is W-IGS.



Behavior cloning

« Main assumptions for analysis:

 Policy preserves fixed point: 7(0) = O for 7 € 11.

» Realizability+stability: 7, € I1y with ¥ = (a, ay, a, by, by, C,7)
satisfying a = ay, by = by, a; < by, ¢ = 1, y = 1 (simplifications made
for clarity, not actually necessary).

- Lipschitz+bounded: A  is L,-Lipschitz for all 7}, 7, € 11 and
sup [[g0)llop < B,

xeR"



Behavior cloning

* Basic inequality: A
err(Zty) = Eengl s, (S5 Mpes i)
-1
< Ly CEn D) Z HC”;TbC(@ — ¢f*(cf)|\2 = L, _g&NgzdiSCT(é; Mpes Ty ) -
=0
» Because 7, € Ily, by W-IGS + Jensen's inequality, assuming £ 57, (S5 Ty, 7,) < 1

b
ar

. n 1 _1-L A
¢ odISCT(S; My, 7, ) S By ol ( =5l 7, (85 Ty 71'*))

- We now use uniform convergence to obtain a bound on E;_ g7, (&; Ty, 7).




Uniform convergence of imitation loss

In stability constrained BC, we minimized 7, € arg min — Z (fi; , T, ), but now
* ﬂEH\P m i—1

we want a bound on ;g2 (&} Ty, 7T, )-

. Because Ty, is afunctionof §y,..., &,

{5} 2 C ﬂ*(fp Mo, ) 75 5N@f ,[*(cf; .., 7T, ), and hence a standard Hoeffding

mequallty |s insufficient.

e We need a uniform law of the form:

0

/N

| |
sup  Pyey | sup | ool (657 7) = — ) £, (& m) | 2 fm, 6,1

€y, €11 rell




Uniform convergence of imitation loss

* Define the following:

. [Uniform bound] B, := sup sup sup?,(; 7, 7).

ﬂdEHqJ T ,72'2€H fEX

_ [Rademacher complexity] %, (I11) := sup sup
n,€lly €1l

tsil

1 m
_{81'} Sllp — 2 gifﬂd(éi; IT, ﬂ'g).

m
mell i=1

« From uniform convergence results (cf. lecture this morning), for any fixed z; € 11y, T, € 11,

with probability at least 1 — o:

nell

1 m
sup | kg8, (S 7, 7,) — — Z ¢ (Cinmomy)| < 2R, + Bg\/
=1

log(2/0)

m




Uniform convergence of imitation loss

_ Claim: B, < 20%BLyT" ", with By = sup [|€]|,.
ceX

* Proof is simple and uses IGS => boundedness of state.



Uniform convergence of imitation loss

« Rademacher complexity bound is more involved.

* Need to fix policy class 11 to obtain concrete bounds.

* For simplicity, we consider a parametric policy class
M= {x- n(x,0):0 € RY, |0, < By} with r € CH(R" x R, RY).

Define L, := sup (x,0)
1
1x]1,<E%0B,, 16]1,<B, £F=MR>")

, Claim: &, (I1) < 650%0ByB,ByLy, T " [—.

m



* Proof: Again, our main tool will be Dudley’s inequality.

By Taylor’s theorem, not hard to check that: 1
|7(x, 0)) — 7(x, )|, < LingIxl1,116) = 0,11, Vx € BY0.5%0By), 6,,6, € BLO,By).

» Therefore, for two policies 7, T & = H

£, (&7, 7) = (670 7) | S 2 1A, (@F(E) = Ay (@D, Ireverse triangle inequality]

=0
—1
= Z [N LGB Ay @ = Ay ()= A, ()]
=0
T—1
<B, Y (@), 0) — (@&, 0, lglly < B
=0

T-1
< B,Ly, ( Z Héﬂf‘l(f)‘b) 160, — 6,]l, [l ), < LB

=0

1 1
< ZC%BOBgLazﬂTl_WH@l — 6|, [IGS bounded state] .



* Therefore by Dudley’s | me uality:
%, (1) < 48(00BOB Ly T ' T \/logN(e -g(O,BH),H - ||,) de

1 L
< 48(%ByByB Ly, T' \Vm [ Vlog(l +2/e) de [N(e; BIO,1),1] - 1) < (1 + 2/€)]

< 6507 ByByB Ly, T' 7y [—.
m B



Behavior cloning

* Theorem: With probability at least 1 — 2¢79,

bo bo bp Do (1—Ly(1 bo) q 2ay
err(m,.) < 0(1);/%5 apa] BC”LA max{(ByB, Ly )2 ,Lzl}T TRARMETRA |
m

b

1 _ L A
. Proof: Recall the basic inequality err(7z;,.) < 4;/610LAT1 al ( sl 7, (65 Ty ﬂ*)) |

 From uniform Convergence with probability at least 1 — o:

=il 7 (65 Ty Ty) S Z & mpe, )+ 2R, (1) + Bf\/

log(2/0)

m

. Slnce z, € 11, then 7, is feasible for the optimization defining Ty, and therefore
m

1
Z (E o) S — Y £, (&7 m,) =0
=1



» Therefore, with probability at least 1 — 2™

n | 4
_5N95ﬂ*(§; ﬂbC’ 71'*) < 2:%,%(1_[) + Bf E

< O()@ByByB Ly, T' 7+ [ + O(1)WByLyT' 771 |-
m m

< O(I)C%BO max{ByB,Ly,, LA}Tl_ﬁ\/z .
m

* Claim follows by plugging this bound into the basic inequality

b

| 1 a
err(#,.) < 8yWL T ( - ol (8 T n*)) ) .




Behavior cloning

b

_ 1y 2a1
Only focusing on T, g, m: err(7,.) < O(I)T(1 ar +3)) (i> .
m

1/2
, For contraction, by = a; = 1 which yields err(z;.) < O(1) <i> .
m

. Implies m > Q(1)q/e? trajectories suffice for err(z,.) < €.

1 2(1 +p)
. For tunable W-IGS system, by, = 1 and a; = 1 + p for p € (0,1), which yields err(7;.) < O(I)T Ca+p? (—) .

p(p+2)
I1+p

. Implies m > Q(1)qg trajectories suffice for err(7;.) < €.

e2(1+p)

+ 2
Note that for p € ((),(\/g — 1)/2) =~ (0,0.618), p(lp ) < 1 and hence sublinear in 7' trajectories suffice.

TP




Epoch based algorithms

* |n practice, behavior cloning is not desirable due to compounding errors.

* Two more practical algorithms are SMlLe [Ross and Bagnell 2010] and
DAgger [Ross et al. 2011].



SMiLe

 Fix number of epochs E, mixing weight a € (0,1].

« Sety = 7,

e Fork € {0,....F —2}:
m/E
_ Collect rollouts { { ¢, "(cfk)} O}m/E and set 7, € arg min Z L (fik; T, 7T, )
z<ll mlE 1 :
m/E
_ Collect rollouts He™ 1(§E 1)} }m/1 and set 7_; € arg min Z fﬂE_l( Z-E_l,ﬂ', T, )

Return 7, =

] — (1 —a)t

zell m/E

[(1 —)rp_ +onp_ — (1 — a)Eﬂ*].



DAgger

 Fix number of epochs E, mixing weight ¢ € (0,1].
» Set 77 € 11 arbitrarily.
e Fork e {0,....E —1}:

. Setm, = a*n, + (1 — a7,

» Rollout policy {{gat”k(cf{‘)}lio f;/f

fip) € argmin ). PRAGEEN)
o Th zell o mlE — A x

A\

 Return best of 7, ..., 7%



SMiLe

* Jo analyze SMILe using our IGS machinery, we need to make a few
modifications.

 We make the following modifications:
 The learned policies are constrained to be IGS stable.

* The learned policies are constrained to not change too much from epoch
to epoch (trust-region constraint).

 We call these modifications CMILe (Constrained SMlLe).



CMlLe

» Fix number of epochs E, mixing weight a € (0,1], trust-region weights {c¢, }.

« Setny = 7,.
e Fork € {0,....F —2}:

« Collect rollouts {{got k(cfk)} m/E and set:

k.
ﬂk c arg I;éll%l m E Z (é:l , T, ﬂ*)
1 m
st. (1 —a)n, + ar € Iy, —— £ (E% r, Lc.
( )M+ an p m/Ezzl (i M) S ¢
« Collect rollouts {{qa”E—l(f.E_l)} }’/”‘/1 and set :
p_, € arg min =l oo n
E-1 gﬂEH m/Elzl g 1(5 *)
s.t. : [(1—(1)% +a7t—(1—a)E7t]€H —M (fElzziz ) < :
I—(1—a) o o €ty T 2 e E-1) = CE-1

=1

. Return 7, = (1 — o)mg_y + afp_ — (1 — a)fm, .

1 — (1 — a)E



Analysis of CMILe

* We will analyze CMILe similar to how we analyzed BC.

» The key idea is to bound err(m; ) by some function of err(x;).

e We start with the basic al
Ay 2 (0) = 800)(my (x

_éN@ ﬂk+l(§ ]Tk+1’ﬂ*) T

/N

<U-a

%ebralc identity:
71'*()6))

= (1 — )g()(m(x) — 7, (x)) + ag(x) (7 (x) — 7, (X))
=(1-a)A, , () +ad; , (¥).

* With this identity, we derive the followmg CMILe basic inequality:

o 2 1A, . (@ (I,

_ngzfﬂk(f; ﬂk’ 71'*) +

SN, 2 1A, 2 (@ EDly + LyE; gdiscr(&; my g, m)

ol (& ) + Ly

_5N@diSCT(5; ﬂk_l_l, ]Z-k) .



We first focus on bounding E_gdiscy(S; 7, 1, 7).

Due to the update 7 = (1 — a)m, + an,, we have . | — m, = a7, — ).
Therefore £ ¢, (&5 7y, M) = Albe g, (S5 7y, ).

Because 7, | is W-IGS, as long as £ 47, (S 7, i) < 1
bo

: 1L ~ -
=z gdISCT(S; My, M) < Syl @ (0‘ =il 1 (S5 T ﬂk)) g

By uniform convergence:
m/E
b (ERn) € Y €, ) + 2R (H)+B\/10g(2/5)
m ;7[ 972- N T l;]z- Qﬂ: m

log(2/0) | |
< +2%, (1) + B, I [trust region constraint] .
m




» Next, we turn to bounding ;g

* By uniform Convergence

_éN@fﬂk(§9 ﬁ-ka ﬂ*)

/N

m/E

m/E

ml/E

<— Z (&6 o 7,) + 2R,

_frv@fyzk(ga ﬂka ﬂ*)

fﬂk(fa ﬁ.ka ﬂ*) y

Z £ (ES By ) + 2R,,:(ID) + B, \/ log(2/9)

m/E

4R (1)

\/ log(2/6)
b,
mlE

log(2/6
0B, \/ 0g(2/6)
mlE

| 7, is feasible]

[uniform convergence] .



Recall our basic inequality:

el (63 Mg ) S (1=

Combining bounds on

least 1 — 36,

_5’\“@ ﬂk+1(§ ﬂk‘l‘l’ﬂ*)

a) 5~9fﬂk(5§ T, Ty) + O _g,\,@fﬂk(f; s Ty) + Ly "gN@diSCT(f; Tt 1 7 -

= dISCT(S; My, ) and Eg g0 ,,k(cf; T, 7, ), with probability at

log(2/0)
mlE

14 ﬂk(cf; m, )+ 4aR, (11) + 20{Bf\/

b

a]

log(2/0)
mlE

+8y%T1_%LA ac, +2aR,,,(11) + an\/

This recursion yields a bound on k7, (S5 p_y, 70,).

Obtaining a bound on the final policy (with no expert) -5,\,91,”@(5; Ty, 7T, ) is more
involved but follows similar ideas.




CMlLe

 Theorem: Suppose that:

m > Q(E(g V log E);0B2T* =% max{B,ByLy,, Ly }>

E(g V log E)

¢, < O(1)(wB, T max{B,ByLy,. LA}\/

| , | |
E > —log(l/a)and a < min , 1 :
‘ a 2 Lywr! T
« Then with probability at least ] — e

2
bo

b (1—”0> 1 a4 ”3 qgVlogE
err(rr;;) < O(1) 0wy OBalT arl, “t max{B BoLg s LA} E
m



CMlLe

b5
~ 1—L)(? bo 2a%
. Only focusing on the dependence on T, g, m: err(rz) < 0(1)T< “ >( T 2“1> (i> g
m
. ~ | 4
. For contraction, we have err(z;) < O(1), /| —.
m
cm = Q(l)q/ £? trajectories suffice for err(ny) < €.
|
1——L_\(2 1 2(1 + py?
., For the tunable P-IGS system, err(r;) < 0(1)T< ”p)< T 2(”1’)) <1> ,
m
- 22 (11 2 1
. m > Q1) 1 T”p( (+py+ 2“*”)) trajectories suffice for err(zy) < €.
£2(1+p)?
2p ) 1 o
. Forp € (0,0.183), we have that 2(1 +p)- 4 < 1, and hence sublinear in T
1+p 2(1 + p)

trajectories suffice.



Why do we care about imitation loss?

nX(T

e Suppose that /1 : [

DS

» Define h_(&) —h({éﬂf(f)} _0)-

« Then because 7, € Ily, we have:

el (8) = haOll, S L

*is an L, -Lipschitz function of the state trajectory.

by

WEeadisCi(S: 7T, 7, ) < 4L,,;/”OT r (err(ﬂ))

» Therefore, small err(z) implies that the performance of the observable / under the
learned policy mimics that of the observable / under the expert policy.

* This observable can encode things like trajectory tracking error and safety

constraints.



Practical implementation

* Trust region policy constraint: the policy trust region constraints are
implemented by constraining the parameters 0, for 7, to lie close in Euclidean

norm to the parameters 6, _, for z,_: ||60, — 0,_||, < k.

« W-IGS constraint: while one could use the Lyapunov characterization, it is

challenging to ensure that the Lyapunov equality holds for all x € R". In our
implementation, we simply drop this constraint and note that it only affects

the low-data regime in practice.

* Open question: can we analyze BC/CMILe by arguing that the learned
policies are already stable without explicit constraints.



Tunable Y-IGS system

* Consider the dynamical sy/;stem in R10;
| X |
X,1=x,—05x——F +——(W(x) + u,
AR "1+05|xP 1+]|xP 7

» All arithmetic operations are element-wise.

. h:RIV 5 RVisg randomly initialized two-layer MLP with zero biases, hidden width
32, and tanh activations.

» Expert policy is 7, = — h],? so expert’s closed-loop dynamics are:
| X, |
X, =x,— 0.5x, ——-, which is W-IGS with a; = 1 + p.




Tunable Y-IGS system

Table of final Hx;XPe“

— x;"||, for all IL algorithms

D BC CMlILe CMlILe+Agg DAgger

1 0.6154+0.154 0.247£0.071 0.239 £0.038 0.474 4+ 0.131
2 1.194+0.130 0.737x=0.009 0.578 =0.095 0.865 £ 0.142
3 1.637x0.220 1.1154£0.066 0.868 £0.065 1.199 4= 0.130
4 1976 £0.106 1.4094+0.080 1.111+£0.080 1.441 £0.126
5 2.107£0.079 1.570+£0.056 1.240£0.091 1.594 + 0.146




Tunable Y-IGS system

Table of final average closed-loop imitation loss —

1

“ s 1S5 7, ) for all IL algorithms

T
D BC CMlILe CMlILe+Agg DAgger
1 0.161 £0.088 0.1134+0.019 0.021 &0.005 0.050 £0.017
2 0.3244+0.097 0.128 £0.013 0.021 £0.003 0.052 4 0.021
3 0.498 £0.120 0.151 £0.023 0.028 &= 0.007 0.064 4 0.018
4 0.6724+0.139 0.163 +0.019 0.031 £ 0.007 0.061 £ 0.023
5 0.905+0.1564 0.154 =0.030 0.035 =0.007 0.0568 = 0.015




Unitree Laikago
 We consider IL for the Unitree Laikago in PyBullet.

 We imitate an expert MPC controller which allows the Laikago to walk
sideways at varying fixed speeds:

* |ncreasing the linear (sideways) velocity decreases task stability.

« MPC controller is based on center-of-mass dynamics as described in [Di
Carlo et al. 2018].




Unitree Laikago
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Regret Bounds for Adaptive Nonlinear
Control
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Motivation

 Recent success in reinforcement learning (RL) has sparked much interest in
analyzing RL for learning to control unknown systems in continuous settings.

* Adaptive control from the 90s also studies learning to control unknown
systems.

e Question: how do these two fields/communities relate to each other?



Comparing RL to adaptive control

RL Adaptive Control

Some structure may be known (e.g., linear
Dynamics MDPs, linear Q-functions, low Bellman rank,
etc.), but otherwise very general.

Very structured: nominal dynamics known, known
basis functions for un-modeled dynamics.

Discrete-time or

. : Discrete-time. Continuous-time.
continuous-time
Guarantees Regret bounds, PAC-style guarantees. Asymptotic convergence, no rates.
Typically optimism/UCB-based, can be Typically certainty-equivalence based,

Algorithms intractable. computationally efficient.




Goal

* Port over several nice properties of RL to adaptive control:
 Handle stochasticity.
* Discrete-time evolution.

* Finite-time regret bounds.



Problem setup

» Consider the following non-linear system evolving in |
X1 =f(x, 1)+ B(x, H)(u, — Y(x,, D)) + w,.

* f(x,1) and B(x, t) are known nominal dynamics. f(0,7) = O for all 7.

» Y(x,t) are known basis functions.

e a € R” are unknown parameters.

e W, IS zero-mean (Gaussian noise.

« Known as matched uncertainty setup in adaptive control.



When does this model arise?

» Consider a fully-actuated system: x,, | = f(x,) + u,.
» We want to drive x;, to the origin, but f(x,) is unknown.

» Picking any p € (—1,1), and playing u, = px, — i1, yields the closed-loop:
X, 1 = px,+f(x)— .

» If f(x,) is well approximated (e.g., with physical or random basis functions) as
f(x) = Y(x,)a for some a, then this follows in our model.



When does this model arise?

» Suppose a controller u . is designed on model f.. (x) + g.;.(xX)u.
» Suppose that u_..; is optimal for f,..;(X) + g...;(X)u.

» Then playing u. . on the real system yields the closed-loop dynamics:

A1 = real(x) T greal(x)usim(x)
[ cl

— felal(x) T greal(x) (usim(x) o ureal(x)) real(x) ::freal(x) T greal(x)ureal(x)] .
» Now suppose that u..,(x) =& Y(x)a for a.

 This falls within our model*.



Problem setup
» Model: x,. | = f(x,, ) + B(x,, H)(u, — Y(x,, H)a) + w,.

» Comparator dynamics: x,, , = f(x;, 1) + w,, i.e., u, = Y(x;, Ha.

[

» The regret of a control strategy {u/'} is:
T T
Ctrl . 2 2
Reg-™ = | ) IIx¥113— ) IIx113 ]
=0 =0

» Here, x| = f(x/, 1) + B(x/, )(u; — Y(x;', 1)) + w,.

 Regret measures the cost of dealing with the uncertain (unmodelled)
dynamics.



Online convex optimization primer

A game played between an adversary and a learner.
Fort=1,2,...:
» Adversary chooses convex loss function 7, : R" — R.

» Learner chooses w, € W, suffers loss £ (w,), and observes (£ (w,), VL (w))).

The performance of the learner is measured via the regret, comparing the performance to the
best fixed prerictor Ig hindsigh}:

Regh*d := ) £,(w,) — min D £w).
=1 =1

Pred

- < o(T) is said to be “no-regret”.

A learner that achieves Reg

See [Hazan 2016] for a thorough treatment of the subject.



Online convex optimization primer

* Online gradient descent:

Learner updates w,, | = Il (w, — n,VZ,(w,), where I1,(x) = arg min |[x — y||,.
yeW

. Achieves Reg-™®! < O(\/T) with , = 1/4/T.

e Online Newton:

[
Learner updates w,, | = 11, y(w, — nATIVE(w)), with A, = Al + Z VE(w)VEw)
i=1

and I, ;(x) = argmin ||x — y|| 4.
’ yeW t

. Achieves Reg?red < O(log T) with < 1 for exp-concave functions, i.e.,

V2l (w) = uVew)Vew)l



Adaptive control with OCO

» We use OCO to estimate a,.

» We play the certainty-equivalence controller: u, = Y(x,, t)a..

» Closed-loop: x,, | = f(x,, 1) + G(x, D)(a, — a) + w,, G(x, 1) := B(x, 1)Y(x, 1).
« After observing x,, {, can obtain necessary signal to update a;:

» Recursive least-squares: y, := f(x,, 1) + G(x, Ha, — x| = G(x, DHa — w,.

|
. Gradient-based: £ (&) = —HG(xt, Ha—a) + th 5
V fz(at) — G(Xt, t)T(xt+1 _f(xt? t))



Adaptive control with OCO

Focus on online gradient based algorithms for now.
1
Recall £ () = EHGt(& —a) + th%.

Online convex optimization bounds give us:

1 -1 -1
o A Pred
— L EIGEIE=F | D £(@) - (@) | <Regy™.
If f(x, r) = 0, then:
T T -1
Citrl 2 2 ~ 112
Reg-™ =E | ) I3 = ) Ix{l3[ = ) EG&I3. so we are done.

In general though, how do we handle non-zero dynamics”?



Adaptive control with OCO

« Theorem (informal): under suitable stability assumptions on f(x, f), we have:

Reg-"' < 1/T - Regi™.

 Consequently, if you use either online Newton or online recursive LS, we have
Ctrl
Reg—" S \ﬁ’ polylog(T).

. If you use vanilla gradient descent, then Reggtr1 < 734
Pred

- regret bound found in [Foster and Rakhlin 2020]

. Note: a similar4/ T - Reg
for contextual bandits.



Main stochastic perturbation result

. The main technical ingredient to show Reg(TZtﬂ < \/ T - Reg'™ is a stochastic perturbation result.

» Consider two stochastic processes {x,}, {y,} with {w,}, {v,} iid N((),av%l ).
X =Jfx, 1) +d(xg,...,x)+w,

Vi1 =f(yta 1) + V.

T T
Question: what assumptions on f(x, ) allow us to bound [E Z thH% — Z HY;H% by a
=0 =0

T-1
function of [E Z HdtH%?
=0
T-1
_ Note that in the context of our adaptive control problem, [E 1d |5 = RegIT)red.

=0



Main stochastic perturbation result

 Recall that {y,} is the unperturbed process.

« Assumption (L2 geometric ergodicity): there exists a p € (0,1) and positive R(x)
such that for all non-negative ¢, k:
‘ _[HYz k”%‘yt = x| — _[Hyt k”%‘yt = 0] ‘ < R(x)pk-

* Theorem: Under L2 geometric ergodicity, we have:

T T
= [Z thH% — Z H)@H%l
T—-1 2 T -1
< \/z m Z min { Hdtzuz,l } \ m Z R(Xt)z + = Z R(f(xta 1) + Wz)z :
=1 =0




* Proof: We build on ideas from [Kakade et al. 2020] and [Yu et al. 2020].

 We start by gefining a “cost-to-go” function for the unperturbed dynamics:

Vi) := ) Elllyell3]y, = x1.

k=s

» Now define h,(x) := V,.p(x) — V,.7(0). We have:

| hy(x) | =

E[yill51 v = 0]

T T
D ElylBlye=x1- )
=k 1=k
T
Y ELy 31y, = x1 = ELlly, ]3]y, = 01
1=k
T
R(x) ) p'™*
1=k
R(x)

[triangle inequality]

[L2 geometric ergodicity]



Now define W, k € {0,...,T} as:

\ > [, D+d(@g, ....0) +w, ift<k
— Z ”§0th D1 =

=0

W, = ] = X, .
k fp 1) +w, e3>k 70770
Wit? this notation, we hTave:
2 2
=Y kI3 = Wr ED Iyli3 = W,
Therefore, we can write the telescoping sum:
T T T—1
2
=) I = ) IR = Wr= Wy = ) Wiy — W),
Now observe that for k € {0,...,7 — 1}, with p,.,, denoting the joint distribution of (x, . . ., x;):
: .
— E 2 -
We=E D, 1115 + Ep Evonitgonoon Vi 7).
=0
k

— B 21 FEF
Wk_l_l o Z th ‘ ‘ 2 + ﬁ():k XNN(f(xk,k)+dk(x0 ..... Xk),GV%I) Vk+ 1 T(x) ’



* With this notation, we have the identity:

T—1

2

k=0
71

k=0
T—-1

k=0

~/

Po:k

|

T T T—1
= D = D I3 = ) (Wi = W)
=0 =0 k=0

—x~N(f(x;,k) dk,av%l)vk 1:T(x) - _x~N(f(xk,k),0v2VI)Vk 1:T(x)]

= x~N( f(xk,k)+dk,av%l)vk+1:T(x) o Vk+1:T(O) + Vk+1:T(O) o

N k)2 e 1 () =

=N k)02 e 1 (0]

=Nk 02D Vi 1:7())]



 We now state a technical lemma from [Kakade et al. 2020].

« Lemma: for any measurable g and two Gaussians N; = N(u,, o), we have:

_ng _ _Nzg < mln {M,l } [ _ngz + _N2g2:| .
O

 Note: this is similar to a classic result which states that forany ¢ : X — [—B, B| and
any two distributions p4, it,, we have:

[E, 8 —E, 8| <2Bllu; — |-

» But this result requires that ¢ is bounded almost surely, while the lemma above
only requires bounded second moments.



 Define Nk = N(f(x,, k)+d,, GV%I) and N, = N(f(x;, k), GV%I).

 With the [Kakade et al. 2020] lemma, we have:

= e~ N( f(xk,k)+dk,ag,1>hk+1(x) —

d
Smm{ u kuz,l} [
GW

1 d
S - { Il |
1 —p o

w

f

~/

N

=N k) 02D e 1 ()

— . 1,2 — 2
Nkhk+1 T \/ Nkhk+1]
kRZ + 4/ -NkRz] . [since | () | <

R(x)

I=p



e Therefore:

I T
DI EA T I A [

AVER

-AB

/N

2
Z ~Pouk (\/ _NkRz T \/ _NkR2> [Cauchy-Schwarz]

/N
(W
| —
s
~N
Ty Nl
/
=)
=
-
—A — I
%qw ‘*&
1O B —
—_
\ﬁf_/
|
."gl o~
<
|
2
=
(\9
4+
|
=
=J
(\O)
N~
(\9

A
_
|
)
-
M
S

Z o ER R + B By R [(a + b)* < 2(a* + b?)]

/N
S
M-
|
=
=
—
Y
TS
—

]
IS
2
M
|
=
)
—
3 | =
b p—
\.l\)l\)
——
2
I
M~
=
®
e
_I_
|
M
=~
=
:§<
e
=
e



Wasserstein contraction implies L2 geometric ergodicity

 \WWe show a relationship between contraction in 2-Wasserstein metric and L2
geometric ergodicity.

* Recall that the 2-Wasserstein distance between u, v is:

1/2
Wy(p,v) = ( inf —ux—yué) .
e,y el'(u,v)

« I'(u,v) is the set of couplings between p, v, i.e., distributions (X, Y) such
that the marginal of X is ¢ and the marginal of Y is v.



Wasserstein contraction implies L2 geometric ergodicity

- 2 2 2 2
. Claim: |E, %113 — E,IIxl13] < v/24/E,IIxlI3 + E,Ixl3Wau.).

* Proof: Let (x,y) € I'(u, v). We have:

[, 1113 = E,IxI31 = TECUxll, + V)l = lvll)
< E(llxlly + IVl = vl reverse triangle]
< /Bl + 1% Ellx = 113 [FAB < VEA>VEB?]

<V2\[E, NI + EJIZ [Elx I3 [(@+b) < 2(a+b)].

« Now take the infimum over (x, y) € I'(4,v) on RHS which yields the claim. =



Wasserstein contraction implies L2 geometric ergodicity

. Let P/(x, A) denote the Markov kernel at time ¢ for the nominal dynamics.

For a measure u, let uP, denote the measure [uP,](A) = {Pt(x,A) u(dx),

andlet P, = PP _,...P,.

+ Claim: Suppose that Wo(uP,...,_,UP.. .. ) < Cy"W,(u,v) forall t € A\
Then the L2 geometric ergodicity condition holds.



* Prooft:

[ | yt+k”%‘yt = x] —

E[yall5ly, = 01

— 2 — 2
o )’t+kN5th:t+k—1Hyt+kH2 o yt+k~50Pt,t+k_1| yt+kH2‘

— 2 — 2
S \/5\/ y,;+k~5th:t+k_1HyZ‘+kH2 T yt+k~50Pt:t+k_1Hyt+kH2W2(5th:t+k—19 50Pt:t+k—1)

< V2 El 13 = 21+ EllyalBly, = 01CHWy(6,.)

< V2 Elllyeal31y: = 1+ Ellyiadl3]y, = 01CH 1l

[Wasserstein inequality]

[Wasserstein contraction assumption]

[W5(0,,0p) < [|x]] ]
|



Contraction implies Wasserstein contraction

» Suppose there exists a sequence {M,} of positive definite matrices such that:

e O, 1) =y, Dlly

+1

o ul < M, < Ll forallt.

< yllx = ylly, forall x, y, 7.

—

. Claim: Wo(uPs. i1 VPpsk1) S \ ;?’sz(//i, V).




Proof: Let { € I'(u,v) be a coupling. Let w,w,. {,...,w,,; beiid from N((),avzvl).

We construct the following coupled dynamical systems:
Xp1 =S, 1) +w,,

Vi1 :f(yta 1) + Wy,

(xta yt) ~ C
Define V, := E||x, — yt”12\4; Observe that:
Vt+1 — _th+1 o yt+1”]2\4 — _Hf(xta t) _f(yta t)szw < }/2 _th T ytujzwt — yZVt'

+1 +1

: 2 2 2 2
Therefore: V,; <y vV, = Xk = Yerlls S ;7 “Ilx, - Yill3:

Now taking the infimum over { € I'(u, v) yields that;

114 — Yt+kH% < ;}’ZkWQZ(ﬂa V).

The claim now follows since we have constructed a coupling for (X, ;, V,.)- ™



Contraction implies Wasserstein contraction

* Now we consider the more general form of contraction:

af T af 2 n
« — (X, )" M(f(x,1),t+ 1)6—(x, N y"Mx,t) Vx € R" t € Ny,
X

0x
e ul S M(x,t) X LI Vxe R"te NS .

e Claim:

Define W := sup Ay (E[M(x, )" H(M(x + w, 1) — M(x, ))M(x, 1)~"*]) v 0.

x€R",1eN;

max(

« Suppose that ;/2(1 +¥) < 1.

T 1k
 Then: Wo(uPp 15 VP 1) S \[; 7\/1 + W Wy(u,v).

* Proof is similar to the state independent metric case, but more technical so we skip it.



Lyapunov stability implies L2 geometric ergodicity

« Claim: Suppose there exists a differentiable O(x, ¢) such that:

» O(f(x, 0,1+ 1) < yQ(x, 1)
e pllxllz < O, 1) < wllxll3,
e« x —~ V(Q(x,1)is L-Lipschitz.

e Then we have:

4 _
| _[Hyt k”%‘yt = x] — _[Hyt k”%‘yt =0] < ;(1 T Hx“%)ak

 (Unfortunately, @ =~ 1 — exp(—n)!)



Lyapunov stability implies L2 geometric ergodicity

* Proof is based on ideas used to prove ergodicity of Markov chains [Meyn and
Tweedie 1993], [Hairer and Mattingly 2008].

 The two key conditions needed are:
o (Drift condition): E[Q(y,,1,t+ 1) |y] < yO(y,1) + R

. (“Small-set” minorization): 1int P (x,A) = a(R) - v(A).
x:0Xx,H<R

» Theissue is that R = O(n) and a(R) = Q(exp(—R)), yielding the
(1 — exp(—n)) convergence rate.



Open question

» If we only assume Lyapunov stability, are 1 — exp(—n) rates unavoidable?

o See https://mathoverflow.net/questions/389180/convergence-rate-for-
ergodic-markov-chains-induced-by-stable-dynamical-systems.

* |s there some assumption in between Lyapunov stability and smooth
contraction metrics that admit rates that do not depend exponentially in n?


https://mathoverflow.net/questions/389180/convergence-rate-for-ergodic-markov-chains-induced-by-stable-dynamical-systems
https://mathoverflow.net/questions/389180/convergence-rate-for-ergodic-markov-chains-induced-by-stable-dynamical-systems
https://mathoverflow.net/questions/389180/convergence-rate-for-ergodic-markov-chains-induced-by-stable-dynamical-systems

Cartpole

» Stateisg = (x,x, 0, 6’).

« We design an LQR controller K using the linearized (RK4 discretized) dynamics about
the unstable equilibrium: g, = (0,0,7,0).

* We use the wrong mass and length parameters.

 LQR gives us an (incorrect) quadratic Lyapunov function:

Q(Q) — E(Q o Qeq)TP(q o q6q)-

« We then adapt to the model-misspecification using velocity-gradients with J(g) and
with 400 random Fourier features [Rahimi and Recht 2007] as the basis functions.



Cartpole

random feature adaptation
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* Notice the system without adaption is unstable, but adaption manages to
correct the model mis-specification.



Semi-contracting system

e \WWe now consider the SDE:

X
dx=| - y+————x+u, = Y(x,0) a | dt + cdw;,
VX2 +y?
dy = 4 7
y=\x+—-y+u, - Y (y,0) a |dt+odw,.
\/ X%+ y?
. Note the nominal system in polar coordinates is: 7 = — (r — 1), @ = 1, which

IS contracting towards the unit angular velocity limit cycle on the unit circle.



Semi-contracting system
 We apply both GD and online Newton to the discretized SDE:
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