Given two positive definite $n \times n$ matrices $H_1$, $H_2$, we can define two inner product spaces $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{H_1^{-1}})$ and $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{H_2^{-1}})$. $ \newcommand{\abs}[1]{| #1 |} \newcommand{\ip}[2]{\langle #1, #2 \rangle} \newcommand{\norm}[1]{\lVert #1 \rVert} \newcommand{\T}{\mathsf{T}} \newcommand{\R}{\mathbb{R}} $ Here, $\ip{x}{y}_A := x^\T A y$ for any positive definite $A$.
In this blog post, we ask the following question. Given $\varepsilon > 0$, how large do we have to choose $\gamma > 0$ (as a function of $\varepsilon$) such that $$ \begin{align} \sup_{\norm{f}_{H_1^{-1}} \leq 1} \inf_{\norm{g}_{H_2^{-1}} \leq \gamma} \norm{ f - g }^2 \leq \varepsilon \:. \label{eq:theinequality} \end{align} $$ Since the image of $\R^n$ under $H_1$ and $H_2$ is $\R^n$, this inequality will always be satisfied for some $\gamma$ sufficiently large. Hence, there exists a minimal $\gamma_* = \gamma_*(\varepsilon)$ for which this inequality holds true.
Let us first perform a change of variables to write the inequality $\eqref{eq:theinequality}$ as $$ \begin{align*} \sup_{\norm{f}_{H_1^{-1}} \leq 1} \inf_{\norm{g} \leq \gamma} \norm{ f - H_2^{1/2} g }^2 \leq \varepsilon \:. \end{align*} $$ Instead of solving the inner sub-problem directly, we pick a feasible solution given by the familiar regularized least squares problem $$ \min_{g \in \R^n} \norm{ H_2^{1/2} g - f}^2 + \lambda \norm{g}^2 \:. $$ The optimal $g_* = g_*(\lambda)$ is given as $g_* = (H_2 + \lambda I)^{-1} H_2^{1/2} f$. Furthermore, if $\norm{f}_{H_1^{-1}} \leq 1$, $$ \begin{align*} \norm{H_2^{1/2} g_* - f}^2 &= \norm{ (H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I )f }^2 \\ &\leq \norm{ (H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2} }^2 \norm{H_1^{-1/2} f}^2 \\ &\leq \norm{ (H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2} }^2 \:. \end{align*} $$ Hence, defining $\lambda_* = \lambda_*(\varepsilon)$ as $$ \lambda_* = \sup\{ \lambda \geq 0 : \norm{ (H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2} }^2 \leq \varepsilon \} \:, $$ an upper bound on $\gamma_*$ is given as $$ \gamma_* \leq \norm{g_*} = \norm{ (H_2 + \lambda_* I)^{-1} H_2^{1/2} H_1^{1/2} } \:. $$ As a sanity check, if $H_1 = H_2$, our upper bound tells us that $\gamma_* \leq 1$, which we expect.
Let us try to crudely upper bound these quantities. Taking the eigendecomposition of $H_1$ and $H_2$ as $H_i = U_i \Sigma_i U_i^\T$, $i=1,2$, and defining $\Delta := H_1^{1/2} - H_2^{1/2}$, we write $$ \begin{align*} (H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2} =(H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I )(H_2^{1/2} + \Delta) \:. \end{align*} $$ Hence, $$ \begin{align*} \norm{(H_2^{1/2} (H_2 &+ \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2}} \\ &\leq \norm{(H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_2^{1/2}} + \norm{H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I}\norm{\Delta} \\ &= \norm{\Sigma_2^{3/2}(\Sigma_2 + \lambda I)^{-1} - \Sigma_2^{1/2}} + \norm{ \Sigma_2(\Sigma_2+\lambda I)^{-1} - I }\norm{\Delta} \\ &= \lambda \max_{1\leq i \leq n} \frac{\sigma_i(H_2)^{1/2}}{\sigma_i(H_2) + \lambda} + \frac{\lambda}{\sigma_n(H_2) + \lambda} \norm{\Delta} \\ &\stackrel{(a)}{\leq} \frac{\sqrt{\lambda}}{2} + \frac{\lambda}{\sigma_n(H_2)} \norm{\Delta} \:, \end{align*} $$ where (a) holds since for any $\lambda > 0$, $\sup_{x > 0} x^{1/2}/(x + \lambda) = \frac{1}{2\sqrt{\lambda}}$. An application of the inequality $(x+y)^2 \leq 2(x^2 + y^2)$ yields that $$ \begin{align*} \norm{(H_2^{1/2} (H_2 + \lambda I)^{-1} H_2^{1/2} - I ) H_1^{1/2}}^2 &\leq \lambda + \frac{2\lambda^2}{\sigma_n(H_2)^2} \norm{\Delta}^2 \\ &\leq \left(1 + \frac{2\norm{\Delta}^2}{\sigma_n(H_2)^2} \right) \max(\lambda, \lambda^2) \:. \end{align*} $$ Therefore, a lower bound on $\lambda_*$ is given as $$ \lambda_* \geq \min\left( \frac{\varepsilon}{1 + 2\norm{\Delta}^2/\sigma_n(H_2)^2}, \sqrt{\frac{\varepsilon}{1 + 2\norm{\Delta}^2/\sigma_n(H_2)^2}} \right) \:. $$ We can now upper bound $\gamma_*$ by similar arguments as before $$ \begin{align*} \gamma_* \leq \norm{(H_2 + \lambda_*)^{-1} H_2^{1/2} H_1^{1/2}} &\leq \norm{(H_2 + \lambda_* I)^{-1} H_2} + \norm{(H_2 + \lambda_*I)^{-1} H_2^{1/2}} \norm{\Delta} \\ &\leq 1 + \frac{1}{2\sqrt{\lambda_*}} \norm{\Delta} \\ &\leq 1 + \frac{1}{2} \left(1 + \frac{2\norm{\Delta}^2}{\sigma_n(H_2)^2} \right) \norm{\Delta} \max\left( \varepsilon^{-1/2}, \varepsilon^{-1/4} \right) \:. \end{align*} $$
We have managed to crudely estimate the radius $\gamma_*$. While the bound is far from tight, we see that the scaling behaviors are intuitive. For instance, as $\Delta \longrightarrow 0$, $\gamma_* \longrightarrow 1$. Similarly, as $\varepsilon \longrightarrow 0$, we have $\gamma_* \longrightarrow +\infty$, since the approximation requirement becomes more stringent. Finally, as $\sigma_n(H_2) \longrightarrow 0$, we have $\gamma_* \longrightarrow +\infty$, which corresponds to the ellipsoid of $H_2$ having a very narrow direction.
PS: I feel like this analysis can be substantially improved in an obvious way.