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Abstract

Consider a dynamical system described by the ordinary differential equation dX/dt = −∇U(X),
and its corresponding stochastic differential equation:

dX = −∇U(X)dt+
√

2dB.

Under what conditions does stability of the deterministic dynamics dX/dt = −∇U(X) imply conver-
gence of the stochastic dynamics to its stationary distribution µ = exp(−U)? In this expository paper,
we give a self-contained derivation of the basic results addressing this question. We first show how
both the Poincaré and log-Sobolev functional inequalities naturally arise from the desire of exponential
convergence. We then construct a stochastic Lyapunov criteria for certifying the Poincaré inequality,
and then show how classical Lyapunov analysis on dX/dt = −∇U(X) directly translates to stochastic
Lyapunov functions. While this paper contains no new results, all proofs given are direct and elementary.

1 Introduction and problem formulation

Let µ be a probability measure on Rn with density (w.r.t. the Lebesgue measure) given by exp(−U), where
U : Rn → R is a smooth potential function. We consider the Langevin diffusion:

dXt = −∇U(Xt)dt+
√

2dBt. (1.1)

Here, (Bt) is standard Brownian motion in Rn. The main question addressed in this paper is the following:

When does the stability of the deterministic dynamics dX/dt = −∇U(X) imply convergence
of the stochastic differential equation (1.1) to the stationary distribution µ?

The study of diffusions of the form (1.1) has a rich history in the literature—see e.g. Bakry et al. [2014]
for a comprehensive treatment of the subject. As such, it is not surprising that the answer to our question
can already be pieced together from existing results. The purpose of this expository paper is to give a
self-contained treatment of these results in the most direct and elementary manner possible.

The main result in this paper is Theorem 4.3, described in full detail in Section 4. At an informal level, it
states that if the dynamical system dX/dt = −∇U(X) is exponentially stable, then the Lyapunov function
which certifies its exponential stability can be used to also certify that the distribution of Xt in the diffusion
(1.1) converges exponentially fast to the stationary distribution µ.
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The path we take towards proving the main result is fairly standard. It is well-known that if the sta-
tionary distribution µ satisfies a functional inequality such as the Poincaré or log-Sobolev inequality, then
the distribution of Xt in (1.1) converges exponentially fast to µ in the χ2-divergence (for Poincaré) or the
KL-divergence (for log-Sobolev). Section 2 gives a self-contained proof of these facts using only basic
tools. Next, in Section 3, we use the work of Bakry et al. [2008] to construct a stochastic Lyapunov criteria
that establishes the Poincaré inequality. Remarkably, this sufficient condition also has an elementary proof.
Finally, we bring all the pieces together by translating deterministic Lyapunov functions into stochastic
Lyapunov functions in Section 4, yielding the main result Theorem 4.3.

1.1 Preliminaries

Notation For a vector x ∈ Rn, the norms ‖x‖ and ‖x‖∞ indicate the `2 and `∞ norms in Rn, respectively.
The closed `2 ball of Rn with radius R is denoted Bn

2 (R). For a function f : Rn → R, ∇f denotes its
gradient and ∆f = tr(∇2f) denotes its Laplacian. For a vector field F : Rn → Rn, ∇ · F =

∑n
i=1

∂Fi
∂xi

denotes its divergence.

Divergences and entropy For two distributions µ, ν on a common measurable space (Ω,A ) with µ� ν,
the χ2-divergence and KL-divergences are defined as:

χ2(µ, ν) := Varν

(
dµ

dν

)
, KL(µ, ν) = Eµ log

dµ

dν
.

The following relationship between χ2 and KL-divergence holds [Tsybakov, 2009, Lemma 2.7]:

KL(µ, ν) 6 log(1 + χ2(µ, ν)) 6 χ2(µ, ν). (1.2)

Both these divergences upper bound the total-variation distance ‖µ − ν‖tv := supA∈A |µ(A) − ν(A)| via
Pinsker’s inequality [Tsybakov, 2009, Lemma 2.5]:

‖µ− ν‖tv 6
√
KL(µ, ν)/2.

For a measure µ and non-negative random variable X , the entropy of X is defined as:

Entµ(X) := Eµ[X logX]− (EµX) logEµX.

Functional inequalities The measure µ satisfies the Poincaré inequality with constant CPI if for all
smooth functions f : Rn → R:

Varµ(f) 6 CPIEµ‖∇f‖2. (1.3)

On the other hand, the measure µ satisfies the log-Sobolev inequality (LSI) with constant CLSI if for all
smooth functions f :

Entµ(f2) 6 2CLSIEµ‖∇f‖2. (1.4)

The log-Sobolev inequality is stronger than the Poincaré inequality: if a measure µ satisfies the log-Sobolev
inequality with constant C, then it also satisfies the Poincaré inequality with the same constant. We provide
a self-contained proof of this well-known fact in Appendix A.
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Integration by parts We will commonly use the following integration by parts identities. Let f, g map
Rn → R and let F : Rn → Rn be a vector field. Assume that these functions are sufficiently smooth, and
the behavior of these functions at infinity is zero. Integration by parts yields:∫

〈F,∇f〉dx = −
∫

(∇ · F )fdx,

∫
f∆gdx = −

∫
〈∇f,∇g〉dx.

2 Functional inequalities imply exponential convergence

In this section, we will show that both the Poincaré inequality and log-Sobolev inequality give rise to ex-
ponential convergence of the diffusion (1.1) to the stationary distribution µ. The main difference is the
divergence in which the convergence is measured.

Let µt denote the density of Xt w.r.t. the Lebesgue measure.1 By the Fokker-Planck equation:

∂tµt = ∇ · (µt∇U) + ∆µt, (2.1)

where the boundary condition imposed on µ0 encodes the distribution used to initialize X0. While (2.1) is
the standard form of the Fokker-Planck equation, for the proofs we will give, it is more natural to express it
involving µt and µ instead of µt and ∇U as follows:

∂tµt = ∇ · (µt∇U) + ∆µt

= ∇ ·
(
µt

[
∇U +

∇µt
µt

])
since ∆µt = ∇ · ∇µt

= ∇ · (µt∇ logµt − µt∇ logµ) since∇ logµt =
∇µt
µt

and µ = exp(−U)

= ∇ ·
(
µt∇ log

µt
µ

)
. (2.2)

Observe that applying (2.2) to µ yields ∂tµ = 0, confirming that µ is a stationary distribution of (1.1).
For what follows, all proofs will be informal in the sense that we will not check the various technical

conditions necessary to interchange order of differentiation and integration, apply integration by parts, etc.
All these proofs can be made rigorous by standard arguments. The following proposition shows that the
Poincaré inequality implies exponential convergence to µ in the χ2-distance.

Lemma 2.1. Suppose µ satisfies the Poincaré inequality with constant CPI. Then for any initial µ0:

χ2(µt, µ) 6 exp

(
− 2t

CPI

)
χ2(µ0, µ).

Proof. By the Poincaré inequality (1.3) applied to f = µt/µ:

χ2(µt, µ) = Varµ

(
µt
µ

)
6 CPIEµ

∥∥∥∥∇(µtµ
)∥∥∥∥2

. (2.3)

Therefore:

d

dt
χ2(µt, µ) =

d

dt

∫
(µt − µ)2

µ
dx

1We will often use the same notation to refer to a measure and its density.
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= 2

∫
µt − µ
µ

∂µtdx

= 2

∫
µt − µ
µ
∇ ·
(
µt∇ log

µt
µ

)
dx Fokker-Planck equation (2.2)

= −2

∫ 〈
µt∇ log

µt
µ
,∇
(
µt
µ

)〉
dx integration by parts

= −2

∫ ∥∥∥∥∇(µtµ
)∥∥∥∥2

µdx since µt∇ log
µt
µ

= µ∇
(
µt
µ

)
6 − 2

CPI
χ2(µt, µ) using (2.3).

The claim now follows by the comparison lemma.

The next lemma parallels Lemma 2.1, but uses the log-Sobolev inequality instead. The main difference
is that convergence is given in the KL-divergence.

Lemma 2.2. Suppose µ satisfies the log-Sobolev inequality with constant CLSI. Then for any initial µ0:

KL(µt, µ) 6 exp

(
− 2t

CLSI

)
KL(µ0, µ).

Proof. This proof is from Vempala and Wibisono [2019, Lemma 2]. First, note that:∫
µt∂t logµtdx =

∫
∂tµtdx = ∂t

∫
µtdx = 0. (2.4)

Next, it is straightforward to verify:

Eµt

∥∥∥∥∇ log
µt
µ

∥∥∥∥2

= 4Eµ
∥∥∥∥∇√µt

µ

∥∥∥∥2

. (2.5)

Applying the log-Sobolev inequality (1.4) to the function f =
√
µt/µ and using (2.5):

KL(µt, µ) = Entµ

(
µt
µ

)
6 2CLSIEµ

∥∥∥∥∇√µt
µ

∥∥∥∥2

=
CLSI

2
Eµt

∥∥∥∥∇ log
µt
µ

∥∥∥∥2

. (2.6)

Hence:
d

dt
KL(µt, µ) =

d

dt

∫
µt log

µt
µ
dx

=

∫
∂tµt log

µt
µ
dx+

∫
µt∂t logµtdx

=

∫
∂tµt log

µt
µ
dx since

∫
µt∂t logµtdx = 0 by (2.4)

=

∫
log

µt
µ
∇ ·
(
µt∇ log

µt
µ

)
dx Fokker-Planck equation (2.2)

= −
∫ ∥∥∥∥∇ log

µt
µ

∥∥∥∥2

µtdx integration by parts

6 − 2

CLSI
KL(µt, µ) using (2.6).

The claim now follows by the comparison lemma.
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At this point, the attentive reader will notice an apparent paradox. As claimed in Section 1 and shown in
Proposition A.1, the log-Sobolev inequality implies the Poincaré inequality. Furthermore, the convergence
result under the LSI (Lemma 2.2) yields convergence in the KL-divergence, compared with convergence
in χ2-divergence given in Lemma 2.1 under the Poincaré inequality. However, the KL-divergence is domi-
nated by the χ2-divergence via (1.2). So at first glance, it appears that the LSI assumption yields a weaker
convergence bound.

The key to resolving this is to observe that the divergence between µ0 and µ at initialization matters.
Suppose for simplicity that both µ0 and µ are Gaussian measures. Then, generically the KL-divergence
KL(µ0, µ) scales as order n. However, the bound KL(µ0, µ) 6 log(1 + χ2(µ0, µ)) implies that gener-
ically, χ2(µ0, µ) must be of order en. Thus, in order to reach χ2(µt, µ) 6 ε, Lemma 2.1 states that
t � CPI(n+log(1/ε)) time suffices. On the other hand, KL(µt, µ) 6 ε is reached in time t � CLSI log(n/ε)
by Lemma 2.2.

The difference in convergence rate between the Poincaré and log-Sobolev inequality can be made more
transparent by considering the q-Rényi divergence:

Rq(µ, ν) :=
1

q − 1
logEν

(
dµ

dν

)q
, q > 0, q 6= 1.

The relationship R2(µ, ν) = log(1 + χ2(µ, ν)) is immediate from the definition. On the other hand, taking
the limit as q → 1 yields that R1(µ, ν) = KL(µ, ν). Under the Poincaré inequality for µ, Vempala and
Wibisono [2019, Theorem 3] show that for all q > 2:

Rq(µt, µ) 6 max

{
Rq(µ0, µ)− 2t

qCPI
, exp

(
− 2t

qCPI

)
Rq(µ0, µ)

}
. (2.7)

That is, convergence in the q-Rényi divergence starts off in a linear regime, and then transitions to a expo-
nential regime after t = qCPI

2 Rq(µ0, µ) time. On the other hand, under the LSI assumption, Vempala and
Wibisono [2019, Theorem 2] show that for all q > 1:

Rq(µt, µ) 6 exp

(
− 2t

qCLSI

)
Rq(µ0, µ). (2.8)

Since R1(µ, ν) recovers the KL-divergence, (2.8) generalizes Lemma 2.2. Comparing (2.8) to (2.7), we see
that the stronger LSI assumption both increases the range of q for which the result applies, and removes the
linear regime in (2.7). The proofs of (2.8) and (2.7) follow similar arguments as the proofs of Lemma 2.1
and Lemma 2.2.

3 A Lyapunov condition for the Poincaré inequality

In Section 2, we saw that convergence of the diffusion (1.1) was ensured via checking whether the stationary
measure µ satisfied either the Poincaré or log-Sobolev inequality. As stated, it is not immediately clear how
to check such functional inequalities. In this section, we follow the work of Bakry et al. [2008] to develop
a Lyapunov condition which certifies the Poincaré inequality. Similar Lyapunov conditions also certify the
LSI [Cattiaux et al., 2009]. We choose to focus on the Poincaré inequality because the proof is simpler.

Lyapunov analysis for deterministic dynamical systems works by finding a Lyapunov function V such
that the time derivative of V along a trajectory is non-positive. In the diffusion setting, this principle still
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applies, but we need a new mechanism for taking a time derivative. For this purpose, we introduce the
following diffusion operator:2

L := ∆− 〈∇U,∇〉.

There are many paths of arriving at the operator L. The most direct is via Itô’s lemma. In particular, for a
smooth function f , Itô’s lemma states that:

df(Xt) =
{
−〈∇f(Xt),∇U(Xt)〉+ tr(∇2f(Xt))

}
dt+

√
2〈∇f(Xt), dBt〉

= (Lf)(Xt)dt+
√

2〈∇f(Xt), dBt〉.

Thus, the operator L encodes the drift term for the Itô stochastic differential equation associated to f(Xt).
We now have the necessary tools to describe a Lyapunov function for (1.1). To distinguish between

Lyapunov functions for the deterministic dynamics dX/dt = −∇U(X) (which we will consider in the next
section) versus the diffusion (1.1), we will term Lyapunov functions for the latter as “stochastic Lyapunov
functions”.

Definition 3.1. The function W : Rn → R is a (ρ, b, R)-stochastic Lyapunov function if the following
conditions hold:

1. W ∈ C2(Rn) and W > 1.

2. ρ > 0, R > 0, and b > 0.

3. LW 6 −ρW + b1Bn
2 (R).

We note that the third condition in Definition 3.1 is the continuous-time analog of the drift condition
typically considered when studying ergodicty of discrete-time Markov chains [Meyn and Tweedie, 1993].
For a radius R > 0, let µ̄R be the measure supported on Bn

2 (R) with density:

dµ̄R = 1Bn
2 (R)

dµ∫
Bn

2 (R) dµ
.

The following result states that if the diffusion (1.1) admits a stochastic Lyapunov function, and if the
measure µ̄R satisfies a Poincaré inequality, then the full measure µ also satisfies a Poincaré inequality.

Lemma 3.2. Let W be a (ρ, b, R)-stochastic Lyapunov function (cf. Definition 3.1). Suppose that µ̄R sat-
isfies the Poincaré inequality with constant CR. Then, µ satisfies the Poincaré inequality with constant
CPI = 1+CRb

ρ .

Proof. This proof is from Bakry et al. [2008, Theorem 1.4]. Since ρW is positive, dividing the Lyapunov
equation yields:

1 6 −LW
ρW

+
b

ρW
1Bn

2 (R). (3.1)

2This operator is the infinitesimal generator of the Markov semigroup (Pt)t>0, where (Ptf)(x) := E[f(Xt) | X0 = x] and
(Xt)t>0 follows the process (1.1). See Bakry et al. [2014] for more details.
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Fix a smooth function f . Since Eµf is the projection of L2(µ) onto the span of constant functions, we have
for any c ∈ R:

Varµ(f) 6 Eµ(f − c)2.

We postpone the choice of c for the time being. Put g := f − c. Observe the following identity:∫
g2LW

ρW
dµ =

∫
g2 ∆W

ρW
dµ−

∫
g2 〈∇U,∇W 〉

ρW
dµ

= −
∫ 〈
∇
(
g2µ

ρW

)
,∇W

〉
dx−

∫
g2 〈∇U,∇W 〉

ρW
dµ integration by parts

= −
∫ 〈

g2

ρW
∇µ+ µ∇

(
g2

ρW

)
,∇W

〉
dx−

∫
g2 〈∇U,∇W 〉

ρW
dµ

= −
∫ 〈
− g2

ρW
µ∇U + µ∇

(
g2

ρW

)
,∇W

〉
dx−

∫
g2 〈∇U,∇W 〉

ρW
dµ since∇µ = −µ∇U

= −
∫ 〈
∇
(
g2

ρW

)
,∇W

〉
dµ.

Therefore by (3.1):∫
g2dµ 6 −

∫
g2LW

ρW
dµ+

∫
b

ρW
g21Bn

2 (R)dµ

6 −
∫
g2LW

ρW
dµ+

b

ρ

∫
g21Bn

2 (R)dµ since W > 1

=

∫ 〈
∇
(
g2

ρW

)
,∇W

〉
dµ+

b

ρ

(∫
Bn

2 (R)
dµ

)∫
g2dµ̄R. (3.2)

We first handle the second term in (3.2). Choosing c = Eµ̄Rf , by the Poincaré inequality for µ̄R:∫
g2dµ̄R = Varµ̄R(f) 6 CREµ̄R‖∇f‖

2 = CR

∫
‖∇f‖2dµ̄R 6

CR∫
Bn

2 (R) dµ

∫
‖∇f‖2dµ.

Hence:

b

ρ

(∫
Bn

2 (R)
dµ

)∫
g2dµ̄R 6

CRb

ρ

∫
‖∇f‖2dµ.

It remains to deal with the first term in (3.2). By completing the square:∫ 〈
∇
(
g2

ρW

)
,∇W

〉
dµ =

1

ρ

∫ 〈
2g

W
∇g − g2

W
∇W,∇W

〉
dµ

=
1

ρ

∫ [
‖∇g‖2 − ‖∇g‖2 +

〈
2g

W
∇g − g2

W
∇W,∇W

〉]
dµ

=
1

ρ

∫ [
‖∇g‖2 −

∥∥∥∇g − g

W
∇W

∥∥∥2
]
dµ

6
1

ρ

∫
‖∇g‖2dµ
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=
1

ρ

∫
‖∇f‖2dµ since g = f − c.

Therefore:

Varµ(f) 6
1 + CRb

ρ

∫
‖∇f‖2dµ.

We now address the question of showing that the Poincaré inequality holds for the measure µ̄R. First,
we have the following Poincaré inequality for uniform measures on bounded sets. This result is standard in
the theory of Sobolev spaces (see e.g. Evans [2010]).

Proposition 3.3. Fix R > 0 and open set Ω ⊂ Rn. Suppose that supx∈Ω‖x‖∞ 6 R. For any function
f ∈ C1(Ω), we have: ∫

Ω
f2dx 6 4R2

∫
Ω
‖∇f‖2dx.

Proof. We extend f so that f = 0 on Ωc. Now, we write f = f(x1, x
′), where x1 ∈ R and x′ ∈ Rn−1. By

the fundamental theorem of calculus, f(x, x′) =
∫ x
−R ∂x1f(s, x′)ds. Now for a fixed x′:

f2(x, x′) =

(∫ x

−R
∂x1f(s, x′)ds

)2

6

(∫ x

−R
|∂x1f(s, x′)|ds

)2

6

(∫ R

−R
|∂x1f(s, x′)|ds

)2

6 2R

∫ R

−R
‖∇f(s, x′)‖2ds,

where the last inequality is Cauchy-Schwarz. Hence:∫
Ω
f2dx 6 2R

∫
Ω

∫ R

−R
‖∇f(s, x′)‖2dsdx′ 6 4R2

∫
Ω
‖∇f‖2dx.

For a radius R > 0, let us define

OscR(U) := sup
x∈Bn

2 (R)
U(x)− inf

x∈Bn
2 (R)

U(x).

The following result gives a (crude) bound on the Poincaré constant for µ̄R in terms of OscR(U).

Proposition 3.4. Fix anR > 0. The measure µ̄R satisfies the Poincaré inequality withCPI = 4R2 exp(OscR(U)).

Proof. Fix an f ∈ C1(Bn
2 (R)) and let Z :=

∫
Bn

2 (R) exp(−U)dx. We have:∫
f2dµ̄R =

∫
Bn

2 (R)
f2 exp(−U)

Z
dx

6 Z−1 sup
x∈Bn

2 (R)
exp(−U(x))

∫
Bn

2 (R)
f2dx
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6 4R2Z−1 sup
x∈Bn

2 (R)
exp(−U(x))

∫
Bn

2 (R)
‖∇f‖2dx using Proposition 3.3

= 4R2 sup
x∈Bn

2 (R)
exp(−U(x))

∫
Bn

2 (R)
‖∇f‖2 exp(−U)

Z exp(−U)
dx

6 4R2 exp(OscR(U))

∫
‖∇f‖2dµ̄R.

4 From deterministic to stochastic Lyapunov functions

In Section 3, we established the notion of a stochastic Lyapunov function, which certified the Poincaré
inequality for µ. The purpose of this section is to relate Lyapunov functions for the deterministic system
dX/dt = −∇U(X) to their associated stochastic Lyapunov functions.

The following definition gives us a class of Lyapunov functions for dX/dt = −∇U(X).

Definition 4.1. Fix positive constants ρ, µ, L and x? ∈ Rn. The function V : Rn → R is a (ρ, µ, L, x?)-
Lyapunov function if V ∈ C2(Rn), and for all x ∈ Rn:

1. V (x) > µ‖x− x?‖2,

2. 〈−∇U(x),∇V (x)〉 6 −ρV (x),

3. ∇2V 4 LI .

The first two conditions are standard for exponential convergence. The minorization condition V (x) >
µ‖x − x?‖2 can be replaced with a more general condition V (x) > µ(‖x − x?‖) where µ is a class-K
function, but we will not do this for simplicity. The last condition is not typical of standard Lyapunov
analysis, and is equivalent to stating that V has L-Lipschitz gradients. This condition is necessary to ensure
that the Laplacian term in the operator L is bounded. One can relax this third condition to allow for mild
growth of the Hessian: ∇2V 4 max{L, ‖x − x?‖α}I for 0 < α < 2 (or more generally if condition one
is replaced by a general class-K function, then the Hessian growth must be dominated by the function that
minorizes V ). Again, we do not do this for simplicity.

The next result shows that setting W = 1 + V generates a valid stochastic Lyapunov function.

Proposition 4.2. Suppose that V is a (ρ, µ, L, x?)-Lyapunov function (cf. Definition 4.1). Then the function
W := 1 + V is a (ρ/2, ρ+ Ln,R)-stochastic Lyapunov function (cf. Definition 3.1) for

R := ‖x?‖+

√
2

µ

(
1 +

Ln

ρ

)
.

Proof. Recall that L = ∆− 〈∇U,∇〉. Hence:

LW = ∆W − 〈∇U,∇W 〉
= ∆V − 〈∇U,∇V 〉 W = 1 + V

6 −ρV + ∆V − 〈∇U,∇V 〉 6 −ρV
6 −ρW + ρ+ Ln ∇2V 4 LI
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= −ρ
2
W − ρ

2
W + ρ+ Ln

6 −ρ
2
W − µρ

2
‖x− x?‖2 + ρ+ Ln W (x) > V (x) > µ‖x− x?‖2

6 −ρ
2
W + (ρ+ Ln)1

{
‖x− x?‖ 6

√
2

µ

(
1 +

Ln

ρ

)}

6 −ρ
2
W + (ρ+ Ln)1

{
‖x‖ 6 ‖x?‖+

√
2

µ

(
1 +

Ln

ρ

)}
.

Our final result combines all the elements together. It gives a rate of convergence for the process (1.1),
in terms of Lyapunov stability analysis for the associated deterministic dynamics dX/dt = −∇U(X).

Theorem 4.3. Suppose that V is a (ρ, µ, L, x?)-Lyapunov function (cf. Definition 4.1). Then µ satisfies the
Poincaré inequality with constant:

CPI =
2

ρ
+ 8

(
1 +

Ln

ρ

)
R2 exp(OscR(U)), R := ‖x?‖+

√
2

µ

(
1 +

Ln

ρ

)
.

For any initial measure µ0, we have:

χ2(µt, µ) 6 exp

(
− 2t

CPI

)
χ2(µ0, µ).

Proof. First, Proposition 4.2 yields that W = 1 + V is a (ρ/2, ρ + Ln,R)-stochastic Lyapunov function.
Next, by Proposition 3.4, the measure µ̄R satisfies the Poincaré inequality with CR = 4R2 exp(OscR(U)).
Lemma 3.2 then establishes that µ satisfies the Poincaré inequality with constant:

2

ρ
+ 8

(
1 +

Ln

ρ

)
R2 exp(OscR(U)).

The convergence result follows by Lemma 2.1.

4.1 Log-concave distributions

An important setting for Langevin diffusion is when the potential function U is convex, or equivalently,
when the measure µ is log-concave. In this setting, we can easily construct a Lyapunov function.

Proposition 4.4. Fix constants α, β satisfying 0 < α 6 β < ∞. Suppose that U ∈ C2(Rn) satisfies
αI 4 ∇2U(x) 4 βI for all x ∈ Rn. Put x? = argminx∈Rn U(x). Then, the function V (x) := 1

2‖x− x?‖
2

is a (2αβ/(α+ β), 1/2, 1, x?)-Lyapunov function (cf. Definition 4.1).

Proof. A standard property [see e.g. Bubeck, 2015, Lemma 3.11] of α-strongly convex and β-smooth func-
tions is that for all x, y ∈ Rn:

〈∇U(x)−∇U(y), x− y〉 > αβ

α+ β
‖x− y‖2 +

1

α+ β
‖∇U(x)−∇U(y)‖2.
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Setting y = x?, we have:

〈∇U(x),∇V (x)〉 = 〈∇U(x), x− x?〉 >
αβ

α+ β
‖x− x?‖2 =

2αβ

α+ β
V (x).

While Proposition 4.4 is simple, it yields a very suboptimal Poincaré inequality constant (and hence
suboptimal constants in the convergence rate). It turns out that if U is α-strongly convex, then µ can be
shown to satisfies the (stronger) log-Sobolev inequality with constant CLSI = 1/α. This condition is known
as the Bakry-Émery criterion. The proof of this result is beyond the scope of this paper.

Theorem 4.5 (Bakry et al. [2014, Corollary 5.7.2]). Fix α > 0. Suppose U ∈ C2(Rn) satisfies the condition
∇2U(x) < αI for all x ∈ Rn. Then, µ = exp(−U) satisfies the log-Sobolev inequality with CLSI = 1/α.
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A Omitted proofs

Proposition A.1. Suppose that µ satisfies the log-Sobolev inequality with constant CLSI. Then, µ satisfies
the Poincaré inequality with constant CPI = CLSI.

Proof. This proof is from Bakry et al. [2014, Proposition 5.1.3]. Define h(x) := x log x. Let g be a function
with Eµg = 0. Fix ε > 0, and set f̄ = 1 + εg. We have:

Entµ(f̄2) = Eµh((1 + εg)2)− h(1 + ε2Eµg2) =: h1(ε)− h2(ε).

Computing the first and second derivative of h1 and h2:

h′1(ε) = 2Eµ(1 + log((1 + εg)2))(1 + εg)g,

h′′1(ε) = Eµ
[
(1 + log((1 + εg)2))2g2 + 4g2

]
,

h′2(ε) = (1 + log(1 + ε2Eµg2))2εEµg2,

h′′2(ε) = (1 + log(1 + ε2Eµg2))2Eµg2 +
4ε2(Eµg2)2

1 + ε2Eµg2
.

Taking a Taylor expansion of Entµ(f̄2):

Entµ(f̄2) = h1(0) + h′1(0)ε+
h′′1(0)

2
ε2 − h2(0)− h′2(0)ε− h′′2(0)

2
ε2 + o(ε2)

= 2Eµg2ε2 + o(ε2).

By the log-Sobolev inequality:

Entµ(f̄2) 6 2CLSIEµ‖∇f̄‖2 = ε22CLSIEµ‖∇g‖2.

Hence taking the limit as ε→ 0:

Eµg2 6 CLSIEµ‖∇g‖2.

Now for any f , set g = f − Eµf , from which the result follows.
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