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The accelerated pace of breakthroughs in machine learning offers unparalleled optimism on
the future capabilities of artificial intelligence. Despite the impressive progress, however, modern
machine learning methods still operate under the fundamental assumption that the data at test
time is generated by the same distribution from which training examples are collected. In order to
build robust intelligent systems—self-driving vehicles, robotic assistants, smart grids—which safely
interact with and control the surrounding environment, we must reason about the feedback effects
of models deployed in closed-loop.

My research grapples with the challenges of using machine learning to control feedback enabled
systems, grounded within the context of robotics. I use tools from control theory, statistics, and
optimization to develop a principled understanding of the methods that underpin modern data-
driven control pipelines. The key threads characterizing my contributions are:
• Learning from temporally correlated data: A distinguishing feature of feedback systems

is that the data becomes correlated across time, which breaks the key independence assump-
tion underlying machine learning methods. The existing literature suggests that learning with
dependencies is harder than without, and requires assumptions that typically do not hold in
practice. In [11, 12, 17], I show that for many problems the outlook is much brighter: learning
from dependent data is surprisingly efficient, as if the data were actually independent.

• Feedback induced distribution shift: Using a model’s outputs to influence future inputs in-
duces a distribution shift: the distribution of inputs the model is trained on no longer reflects the
test distribution. This misalignment yields errors in model predictions, which further compound
at every step due to feedback. Distribution shift is a primary failure mode of imitation learning,
the widely used practice of teaching robots to solve complex tasks via expert demonstrations.
I show that incremental stability, a key concept from control theory, mitigates the effects of
feedback induced distribution shift [10, 14]. This enables the design of practical algorithms for
imitation learning that explicitly account for compounding errors in closed-loop.

• Online adaptation to environment changes: A deployed model should continually learn
to improve online, in the face of a dynamically changing environment. In [4], I extend a classic
nonlinear adaptive control method to utilize rich nonparametric function classes, removing the
need for unrealistic parametric assumptions on the functional form of the environment changes.
Furthermore, I provide the first rate of convergence for this classic algorithm, quantifying how
fast it adapts to new conditions online [3].
As a research scientist within the robotics branch of Google Brain, my work is enriched by

frequent collaborations with practitioners. To further ensure that my work is continually informed
by practice, I also maintain trajax [7], a differentiable optimal control library for model predictive
control. The trajax solver enables real time planning and control across a diverse set of tasks,
including social navigation in indoor environments [15] and catching objects in flight [1].

Figure 1: Robotic tasks where online planning and control are computed in real-time using trajax.
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Looking forward, as a professor I will lead an interdisciplinary group of students to continue
addressing the challenges of feedback in machine learning. I intend to focus on both the foundational
aspects of using machine learning for control, and on designing practical learning algorithms to
unlock new robotic capabilities while maintaining safety and robustness guarantees. Two broad
future directions I intend to focus on are: (1) the foundations of learning to control from visual
feedback, where the environment becomes partially observed, and (2) leveraging the recent advances
in generative modeling to enable rich multi-modal robot behaviors.

Learning from temporally correlated data
A unifying theme in prior work is that the complexity of learning from a dependent process is
dictated by how fast it “forgets the past”, or “mixes”. Specifically, data that is nearly independent
across time (i.e., mixes quickly) is easier to learn from compared to data with long range temporal
correlations (i.e., mixes slowly). Conversely, without some assumption limiting the dependence
across time, learning is generally not possible. My work challenges this conventional wisdom.

In [12], I introduce another axis to the problem—the number of independent trajectories. This
is inspired by data collection pipelines in robotics, where instead of collecting one long rollout,
many independent rollouts starting from randomized initial configurations are collected. Using
linear regression as a testbed, I show that by introducing this explicit “reset”, the requirement
that data mixes can be replaced by the more realistic requirement of having sufficiently many
independent trajectories. Furthermore, the resulting risk bounds are sample efficient: for a broad
class of trajectory distributions, the excess risk of linear regression from m trajectories of length T
matches the optimal rate for linear regression over mT independent data points. This work yields
several key takeaways for learning from dependent data: (a) mixing is not necessary for learning,
and (b) even when mixing holds, it does not necessarily degrade sample complexity.

Returning to the single trajectory setting, my work [11, 17] shows that even in this more classical
setup, the key takeaways from the multiple trajectories setting remain valid. In [11], I show that for
linear regression problems where the covariates are generated by a linear dynamical system, a mixing
assumption is unnecessary and can be replaced with a marginal stability condition. This result has
seen many applications in quantifying the sample complexity of learning to control linear quadratic
regulators—a classic optimal control problem—which was the focus of my dissertation [6, 9, 13].
In [17], I study a much more general class of nonparametric regression problems. I show that
even when mixing holds, it only manifests through a burn-in time, after which the risk bounds for
learning from a single trajectory match the optimal rates of learning from independent data.

Feedback induced distribution shift
In the context of imitation learning, one intuitively expects that expert behaviors that are more
robust to small perturbations are less susceptible to error amplification through feedback. My work
identifies system-theoretic properties that make this intuition precise, and proposes new algorithms
that use stability theory to mitigate distribution shift.

In [14], I blend together ideas from interactive imitation learning (e.g., DAgger) and constrained
policy optimization (e.g., Trust Region Policy Optimization). I show that if one combines behavior
cloning with incremental stability constraints on the learned policy, then errors in policy predictions
can no longer catastrophically compound due to stability. This yields the first sample complexity
bounds for imitation learning that are sublinear in the task horizon length, and can become inde-
pendent of the task horizon in certain cases. My work provides fine-grained insight into how the
stability properties of the task reflect the hardness of imitation learning. I also use our nonlinear
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Figure 2: The imitation learning pipeline. My research studies all three components.

model predictive controller (MPC) for Laikago, a quadruped robot, to study how these insights
translate into practice. By taking desired walking speed as a natural proxy for task complexity, I
show that to achieve a fixed level of closed-loop performance using imitation learning, more exam-
ple demonstrations from the MPC controller are indeed required as the task complexity increases.
This finding reflects the qualitative behavior prescribed by our theory.

In [10], I show how to construct a surrogate loss function to replace the hard incremental sta-
bility constraints enforced in [14]. Remarkably, by modifying the behavior cloning loss to include
matching expert Jacobians along the demonstration trajectories, one obtains the benefits of con-
strained policy optimization for mitigating distribution shift, while avoiding the need for explicitly
enforcing hard constraints. This yields an efficient algorithm for settings where Jacobian informa-
tion is readily available, such as policy distillation, where a simple network is trained to imitate a
computationally expensive controller.

Online adaptation to environment changes
A desirable property of a feedback controller is the ability to adapt online to new unforeseen changes
in its surrounding environment. Adaptive control algorithms offer a promising solution, but are
limited by key drawbacks when applied to modern systems.
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Figure 3: The level set of a Lyapunov func-
tion in phase space, learned from trajectories of a
damped pendulum [2]. This function succinctly
encodes the necessary information about the sys-
tem dynamics for adaptive control.

Most adaptive control algorithms operate by
making strong assumptions on both the system dy-
namics and the environment disturbances. Velocity
gradient algorithms, a classic family of methods for
nonlinear adaptive control, abstract away the de-
tails of the system dynamics via the notion of a sta-
bility (e.g., Lyapunov) function, but still make an
unrealistic assumption that the disturbances modi-
fying the environment live in the span of a known
set of basis functions. In [4], I remove this assump-
tion by showing that velocity gradient algorithms
are actually compatible with modeling disturbances
using rich nonparametric function classes. Further-
more, when the stability function cannot be derived
from first principles, as is often the case for modern
robotic systems, I show that it can instead be learned from trajectory data [2, 16].

Finally, while velocity gradient algorithms come equipped with convergence guarantees, these
guarantees are asymptotic, and do not quantify the rate at which adaptation to new changes in
the environment occurs. In [3], I provide the first finite-time analysis, using tools from online
convex optimization to show that if the stability function is strongly convex, then velocity gradient
algorithms actually enjoy sublinear regret.
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Vision for future work
Learning to control from vision and other sensing modalities

Many robotic tasks, such as manipulating deformable objects, navigating cluttered environments,
and catching balls in flight, necessitate vision in the loop. Vision, however, adds significant com-
plexity to controller design and analysis. The two main issues are: (1) visual models must be
learned from data, but quantifying the error of these models is non-trivial even without any feed-
back/control, and (2) most tasks requiring visual feedback are partially observed, whereas control
in partially observed environments is generally intractable.

For quantifying the error of visual models, there is an exciting line of recent work on using
conformal prediction methods to estimate confidence intervals. Extending these methods to apply
when the inputs to the model are temporally correlated, and then using the resulting uncertainty
bounds for control, is an exciting direction of future research. This aligns well with our previous
work on learning control barrier functions for safe controller design from visual observations [8],
assuming that valid uncertainty intervals for the perception map are provided.

On control of partially observed environments, a potential direction is to focus again on imitation
learning, which allows one to sidestep hardness results. The challenge then becomes reasoning
about distribution shift errors again. Formalizing incremental stability in the presence of partial
observation is an exciting direction. Furthermore, there are opportunities to co-design both the data
collection process and the learning algorithms. In [5], we take a first step towards this co-design:
by instructing human teleoperators to purposefully inject failures, followed by demonstrating a
recovery behavior, we are able to learn more robust visual policies for a t-shirt lifting task. Our final
approach, however, was discovered mostly through experimentation. Characterizing the optimal
teleoperation data collection strategy for a fixed operator budget is a ripe area for future research.

Applications of generative modeling to robot control

My work has thus far focused on deterministic policies—functions that take in a state vector and
output a single action vector. However, for a given task configuration, there are often many equally
optimal actions (e.g., many viable pick and place locations or end effector poses). Allowing policies
to be inherently multi-modal yields more human-like and robust behaviors. Furthermore, multi-
modality need not be limited to low level action selection, but also can be applied at higher motion
and path planning levels. For the continuous spaces typical in robotics, learning a conditional
distribution given an encoding of the current environment amounts to generative modeling.

The recent breakthroughs in machine learning around generative modeling provide a rich set
of ideas to bring into robotics and learning to control. How to best adapt these techniques, while
maintaining correctness guarantees for sampling from the true underlying distribution, is an open
question. One issue of using generative models in feedback is that there are often computational
constraints on inference, since decisions must be made in real-time. In contrast, modern generative
models often have relatively slow sampling procedures. Understanding the fundamental tradeoffs
between inference speed and sample quality is an interesting direction. Secondly, current state of
the art models are quite data intensive (trained on internet scale datasets), whereas data collection
is often the bottleneck in robotics. How to build data efficient models that remain expressive, while
also having fast inference speed, remains open. I have begun some preliminary work, using compact
energy model parameterizations to learn distributions over object grasps with noise contrastive
estimation. This is only a first step, however, and I believe there is ample ground for innovation.
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